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• We investigate magnetopause flux ropes 
using data from the Magnetospheric 
Multiscale (MMS) mission

• We present two case studies of ion-scale 
flux ropes, on the edge of which we 
observe electron trapping in magnetic 
mirror structures 

– In particular, we focus on the particle 
pitch angle distributions, and how they 
can indicate particle trapping

• We discuss the possible formation 
mechanisms of the magnetic mirror 
structures, as well as how the structures 
could evolve and produce particle 
acceleration 
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• Flux ropes are helical magnetic field structures formed during magnetic reconnection
– Observed on the magnetopause and in the magnetotail (e.g. Russell & Elphic, 1978; Fear et 

al., 2008)

• They are a proposed site for electron acceleration
– Fermi acceleration as island contracts (Drake et al., 2006) 
– Energetic electron fluxes observed to peak at sites of compressed density inside magnetic 

islands (Chen et al., 2007)
– Particle acceleration and reflection in flux pile up region surrounding flux rope (Zhu et al., 

2019)

Flux ropes and particle acceleration
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1. Introduction
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2. Electron trapping case study 1 
2nd January 2017
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2nd January 2017 
magnetopause crossing

• MMS was moving outbound from the 
magnetosphere into the magnetosheath 

• Data presented in LMN coordinates 
based on MVA on full magnetopause 
crossing at 03:07UT

• During a partial crossing of the 
magnetopause, a flux rope was observed 
at 03:18UT, just prior to the spacecraft 
exit from a reconnection exhaust into the 
magnetosheath

Magnetopause 
crossing used 

for MVA

Flux rope 
observation

magnetosphere

magnetosheath

Reconnection 
exhausts

(a)

(h)

(f)

(e)

(b)

(c)

(d)

(g)

(j)

(i)
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Figure 1: 2hr interval of MMS2 data during 

an outbound magnetopause crossingsadie.robertson14@imperial.ac.uk



Ion-scale flux rope with 
unexpected electron 
trapping

• Electron pitch angles go from 90° to 60°
and 120° and back (i-n)

– Particularly for 50-200eV electrons (j & k)

• Corresponding dip in the magnetic field 
strength of ~10nT (a)

• Suggests electrons trapped by magnetic 
mirror
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Figure 2: 6s plot of MMS1 
data showing flux rope 

observation. 
Jump to plot for case study 2



3D structure
• BM guide field of ~20nT observed throughout flux rope observation

– Flux rope and trapped population have extended 3D structure

• Dip in BM component of 
magnetic field through trapped 
population provides majority of 
|B| decrease which leads to 
electron trapping

– ‘Steepening’ of field lines 
through trapped population 
produces trapping – see 
diagram

– BM ≃ BL through trapped 
population, allowing us to set 
minimum m-extent of ~1.7di
for the trapped population

trapped 
population

body of 
flux rope 
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Figure 3: 3D diagram of flux rope observation
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Formation and evolution 

• Consistent with magnetic hole observations (e.g. 
Yao et al. 2018)

– Single isolated structure, rather than a train of holes

• Magnetic mirror instability 
– Growth of instability explains donut-shaped pitch 

angle distributions – see Southwood and Kivelson
1993

– Mirror instability requires high plasma beta and a 
temperature anisotropy – we observe an increase in 
plasma beta (e) and temperature isotropies of ~1.5 
(d) on the edges of the trapped populations

• Small increase (~0.2nPa) in total pressure through 
trapped population (f)

– Increase in ion and electron pressures (~0.3nPa and 
~0.1nPa, respectively) approximately balances 
decrease in magnetic pressure (~0.2nPa) 

(a)

(f)

(e)

(b)

(c)

(d)
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Temperature 
anisotropy at edges of 

trapped population

Increased beta 
through trapped 

population

Small increase in total 
pressure through 

trapped population
Figure 4: 6s plot showing temperature anisotropy 

and pressure throughout flux rope observation
Jump to plot for case study 2sadie.robertson14@imperial.ac.uk



Second trapped 
population 

• Shorter duration trapped population
– Focused at 90 degrees, with no donut-

shaped structure (i-n)
– Corresponding 𝑇!" increase of ∽20eV 

(g)

• Consistent with kinetic scale magnetic 
hole observations (e.g. Huang et al. 
2016)

• If one structure evolved into the other, 
how much betatron heating would we 
observe?

– 10eV of heating calculated from change 
in |B|

– 15eV of heating observed
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Figure 5: 6s plot of MMS1 
data showing flux rope 

observation
Jump to plot for case study 2

ΔTe ~15eV

Δ|B| ~5nT leads to ~10eV 
of betatron heating



3. Electron trapping case study 2 
9th December 2015 
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Second case study 
9th December 2015

• Ion-scale flux rope observed during an outbound 
magnetopause crossing

• Electron magnetic mirror trapping in magnetic 
hole, as in case study 1

– Dip in magnetic field strength of ~10nT on 
magnetosheath edge of flux rope (a)

– Pitch angle distributions (i-n) exhibit similar donut 
features

• Field line configuration consistent with Figure 3

• Here we observe a corresponding parallel 
population of electrons in the pitch angle 
distributions (i-n)

– The field lines on which electrons are trapped have 
a different topology to case study 1
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~6.5di
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Figure 6: 6s plot of MMS1 
data showing flux rope 

observation
Jump to plot for case study 1

Parallel electrons 
observed throughout 
trapped population

based on 
flow 

velocity in 
l-direction 
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Second case study – formation and evolution

• We again observe a temperature anisotropy (d) 
and increase in plasma beta (e) through trapped 
population

– Approximately uniform temperature anisotropy of 
~0.5 throughout trapped population

– Larger increase in parallel electron plasma beta than 
in perpendicular electron plasma beta 

• Greater increase in total pressure (~0.4nPa) 
through trapped population (f)

– Increase in electron pressure (~0.2nPa) balances 
decrease in magnetic pressure (~0.2nPa)

– Increase in ion pressure (~0.4nPa) results in overall 
pressure enhancement

• Different pressure balance and temperature 
anisotropy profiles suggest the two case studies 
could be different evolutionary states of the same 
phenomena

(a)

(f)

(e)

(b)

(c)

(d)
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Temperature anisotropy 
observed throughout 
trapped population

Increased beta 
through trapped 

population

Increased total 
pressure through 

trapped population

Figure 7: 6s plot showing 
temperature anisotropy and 

pressure throughout flux 
rope observation

Jump to plot for case study 1sadie.robertson14@imperial.ac.uk
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Second case study – force analysis

• Data is present for all 4 spacecraft throughout 
this event (some MMS3 data was missing for 
case study 1), meaning we are able to conduct 
multi-spacecraft analysis

– The curlometer technique is used to investigate 
gradients and therefore forces on the plasma 
throughout the event

– Analysis is in GSE, where X,Y,Z ≃ L,M,N

• Forces over trapped population could provide 
insight into dynamics of structure

– Ion and electron measurements have different 
time resolution - we interpolate the sum of the 
forces onto both domains, noting that caution 
must be taken when interpolating ion data to 
higher electron resolution

• Potential bipolar signatures observed through 
trapped populations, however more analysis is 
required

(a)

(f)

(e)

(b)

(c)

(d)
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Potential bipolar 
signatures through 
trapped populations

Centre of trapped 
population

Figure 8: 8s plot showing force analysis 
throughout flux rope observation
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• Provided evidence of electron trapping in the field depression at the edge of a flux rope 
– Consistent with magnetic hole observations

• Shown that both the flux rope and the trapped populations have extended 3D structure

• Two case studies show different temperature anisotropy and pressure balance 
signatures, suggesting they could be different evolutionary states of the same 
phenomena

– Scope to investigate this further using multi-spacecraft techniques and force analysis

• In one case study we also observe a second trapping event, consistent with kinetic 
scale magnetic hole observations

• The evolution and relationship between such structures over various scales could be 
important for particle acceleration in magnetic reconnection

14

4. Conclusions
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