Tsunami forecasting with assimilation of tsunami data on dense arrays: the 2009 Dusky Sound, New Zealand, tsunami

A. Gusman, A. Sheehan, and K. Satake

¹ GNS Science, 1 Fairway Drive, Lower Hutt, 5011, New Zealand

² Department of Geological Sciences, University of Colorado Boulder, 216 UCB, Boulder, 80309, United States

³ Earthquake Research Institute, The University of Tokyo, 1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan

Background (Tsunami Forecasting)

Traditional approachObservationSource ModelTsunami Forecast		Data assimilation Tsunami Observation Tsunami Wavefield Tsunami Forecast	
	Traditional Approach: Source modeling	Data Assimilation	
Source Model	RequiredEarthquake modelSea surface model	Not required	
Observation	SeismicTsunamiCrustal movement	Tsunami dense array	
Forecasting	Forward modelingPre-computed database	Forward modeling	
Coverage	Global	Regional or local	

Objective

- Evaluate different approaches for tsunami forecasting
 - 1. Tsunami scenario database (threat level maps) for New Zealand
 - 2. Tsunami data assimilation using MOANA dense array
 - 3. W Phase source inversion and tsunami data assimilation
- Estimate the earthquake source model by a tsunami waveform inversion and simulate the tsunami to get a reference tsunami threat level map for the evaluation.

Tsunami data assimilation

Source: Far-field Tsunami waveforms: Generated from a hypothetical earthquake

Method

Wavefield obtained by solving the linear shallow water equations. $X_n^f \equiv F X_{n-1}^a$

Residual for the current time step $y_n - HX_n^f$

Data-assimilated wavefield $X_n^a = X_n^f + W[y_n - HX_n^f]$

Maeda et al., GRL, 2015

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4

-0.5

rra nse Ð C nitiativ J cad Cas

The 15 July 2009 Dusky Sound Earthquake and tsunami

MOANA (Marine Observations of Anisotropy Near Aotearoa) seismic experiment deployed west and east of South Island, New Zealand (**2009–2010**).

Fry et al. (BNZSEE, 2010)

Tsunami Observations

Observation stations

- 7 Tide gauges
- 2 DART buoys (absolute pressure gauges)
- 15 Differential pressure gauges (MOANA OBS network – Scripps Institute of Oceanography)

Previous earthquake source model and tsunami simulation

Beavan et al., GJI, 2010

3

5

Model

Model

5

Observation

Observation

6

Earthquake source model

GeoNet Geological hazard information for New Zealand						
Home Earthquak	xe ^ Landslide ^	Tsunami ^	Volcano ^	Data ^	search	Q
Origin				Latitude	Longitude	Magnitude
PublicID	3124785			-45.77°	166.59°	7.8
UTC Time	2009-07-15	5T09:22:29Z		<		
Latitude	-45.77 (± 0	.0 km)			Corrector Rate	
Longitude	166.59 (± 0	0.0 km)			the fact	
Depth	12 km (± 0	km)			Lat 5/3	
Depth Type	operator as	ssigned			he al	\frown
Earth Model	nz1dr				•	5
Used Phase Count	19				000	-6
Used Station Count	17					
Standard Error	0.16 (s)			•	Ser /	
Azimuthal Gap	230.00 (de	grees)		A	and the	
Minimum Distance	0.40 (degre	ees)		Nº 4	•	
Magnitudes			5.0			
TYPE	MAGNITUDE	_	as the second	5.		
Preferred (Mw)	7.8	. 🧳				
Mw	7.8	-	and the second			

Version 3.00 May 2019

This document is due to be replaced by 1 January 2020. It is not recommended to use this document after this date.

This document is for internal use by GeoNet and MCDEM only - please do not distribute.

User Guidelines

Tsunami Scenario Database

Latitude	Longitude	Magnitude
-45.77°	166.59°	7.8

Main Index Map >> Southwest Pacific

Southwest Pacific

Sub-region (Magnitudes)		Page
North New Guinea (8.7, 8.9, 9.1 and 9.3)	Select	32
Manus OCB (8.7, 8.9, 9.1 and 9.3)	Select	33
New Britain-Solomons-Vanuatu	Select	10
Tonga-Kermadec North	Select	11
Hikurangi-Kermadec South	Select	12
Puysegur Trench	Select	13
Hjort Trench (8.1, 8.3, 8.5, 8.7, 8.9, 9.1 and 9.3)	Select	47

Main Index Map >> Southwest Pacific >> Puvseour Trench

Puysegur Trench

Magnitude		Page
7.5, 7.7 and 7.9	Select	45
8.1, 8.3, 8.5, 8.7, 8.9, 9.1 and 9.3	Select	46

Puysegur Trench

Tsunami Scenario Database

Tsunami Data Assimilation

Tsunami Data Assimilation

Reference model Actual earthquake magnitude: 7.8

Tsunami data assimilation

W-Phase Source Inversion

W phase is a long period **phase** arriving before S wave. It can be interpreted as superposition of the fundamental, first, second and third overtones of spheroidal modes or Rayleigh waves and has a group velocity from 4.5 to 9 km s- 1 over a period range of 100–1000 s (Kanamori and Rivera, 2008; Duputel et al., 2012).

SNZO(IU.00.LHZ) 3.21 1.00	WCMT, Mw= 7.85	RCMT, Mw= 7.78 ratio = 0.76; epsilon = 0.568
Moment Tensor	7 minutes data (15° epicentral distance)	GCMT solution
Lon	166.404°	166.26°
Lat	-46.150°	-45.85°
Magnitude (Mw)	7.9	7.8
Strike	353°	25°
Dip	15°	26°
Rake	79°	138°
Depth	23.5 km	23.5 km

W Phase Source Inversion + Tsunami Data Assimilation

W Phase Source Inversion + Tsunami Data Assimilation

Summary

We have evaluated three tsunami forecasting approaches for the case of the 2009 Dusky Sound earthquake and tsunami:

- **1. Tsunami scenario database**: The forecasted tsunami threats are one level higher than the reference in many regions. The scenario magnitude is higher than the actual one and the scenario is a pure thrusting fault.
- **2. Tsunami data assimilation**: Gives good forecast of tsunami threat only in regions covered by the tsunami array network. Can forecast tsunamis without any source information.
- **3.** W phase source inversion and tsunami data assimilation: Gives the most similar forecast to the reference. The fault model has fault parameters similar to the reference model. The tsunami data assimilation corrects tsunami amplitude.