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We argue the Ruby-East Humboldt and Snake Range
core complexes record non-lithostatic pressures

There has been debate for decades whether rocks were exhumed
from 25-30 km (6-8 kbar, if lithostatic) or 10-12 km (2-3 kbar). Field
relationships favor less burial and P-T estimates favor deep burial.
We provide evidence for limited burial based on:

1. Observations of a high geothermal gradient (30-40°C/km)
from a traverse across stratigraphy is at odds with
predictions from high P-T estimates (<25°C/km)

2. Field evidence of continuous stratigraphy that was not
deeply buried

3. The implied deep-burial thrust faults would have an
atypical geometry for North American and other global
fold-thrust belts

4. Arelatively new, economically important gold deposit
mineralized at depths < 5km, but deep burial models
suggest deeper mineralization

The consistent high P estimates over the past decades,

despite evidence against deep burial, may be compelling
evidence for non-lithostatic pressures
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Geologic mapping still required to solve big tectonic problems:
STATEMAP funding through the National Cooperative Geologic
Mapping Program of the US Geological Survey makes this possible

~ Three new 1:24k quads

from NE Nevada:
Henry and Thorman (2015);
Zuza et al. (2018, 2019)

- Maps accessible at
| https://gisweb.unr.edu/Geologi
| cMaps/



https://gisweb.unr.edu/GeologicMaps/

Cordilleran core complexes across western North

America concentrate within previously thickened crust
Present-day exposures
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For these core complexes, the depth of the rocks that they exhume is debated:

« P-T estimates suggest peak burial to 25-30 km (6-8 kbar, if lithostatic; “deep,” in this study)

 The western US is covered by incredibly well characterized Paleozoic passive margin (see below),
which allows for confident field-base palinspastic restorations. These restorations always suggest
shallow burial (i.e., the rocks were exhumed from “stratigraphic depths” of 10-12 km, 2-3 kbar).
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Were the lower passive margin rocks buried to depths of 25-30 km (6-8+ kbar)?

« Lithostatic interpretation of P-T estimates say yes
(also see Hodges et al., 1992; McGrew et al., 2000; Cooper et al., 2010)

i+ Remarkable consistency in pressures, given two distinct core complexes and variety
Whitney et al. (2013) of methods over the years (1990s to present)
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Were the lower passive margin rocks buried to depths of 25-30 km (6-8+ kbar)?
« Geologists that have been mapping these rocks for decades argue against burial significantly
deeper than stratigraphic depths (10-12 km) (literature from C. Thorman, E. Miller, P. Gans)

« Two primary arguments, among others:
* Deep burial models require major thrust faults to bring basal section to 25-30 km depths;

there is no observation of such structures
» Alack of significant stratigraphic omission rules out removal of 10s+ km of stratigraphic

section during normal-sense core complex activity
* No field evidence for structures that brought the rocks this deep, and no field

evidence for structures returning from this depth
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Fig, 10. Interpretive geologic cross section from the Schell Creek Range to the Confusion Range.

In this classic Miller et al. (1983 Tectonics) cross section, the Snake Range detachment is drafted juxtaposing Cambrian
footwall rocks (CPM, Prospect Mountain quartzite) against Cambrian hanging wall rocks (CPC, Pole Canyon)



With this setup, we test deep vs stratigraphic burial in the Ruby-East Humboldt core
complex, but note that our implications apply to the northern Snake Range
 What was the paleo-geothermal gradient? Which model does this best fit predictions of?

* |s there any field evidence for deep burial?
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P-T compilation:

« Two groups of P, limited T variation

* High P requires low geothermal gradients of
<25°C/km

« Set of low P estimates not structurally
separated from high P rocks; these estimates
overlap predictions of stratigraphic burial

« Stratigraphic, low P requires high geothermal
gradients of 30-40+°C/km

To test geothermal gradient, we compiled peak
temperature (T,) dataset from new and
published data:

« RSCM

« CAI

» Calcite-dolomite thermometry
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Peak temperature (T,) dataset from new and
published data:

« RSCM

« CAI

« Calcite-dolomite thermometry

Red field shows predictions of published thrust-
burial models (Camilleri and Chamberlain, 1997)

Data shows high ~40°C/km gradient

There is some spread, which we attribute to
local thermal pulses and hydrothermal alteration

Some conodonts from CAI analyses had a

sugary cryptocrystalline that we interpreted as
hydrothermal alteration
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In summary, temperature data is at odds with deep burial

Pressure (kbar)

Eastern NV paleo-thermal gradients are >40°C/km

Required gradient of <25°C/km is at odds with pervasive intrusions and mineralization

Other orogen’s have high gradients: Andes or Tibetan Plateau
(e.g., Francheteau et al., 1984, Derry et al., 2009; Cardoso et al., 2010)
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Field relatlonshlps at odds W|th deep burlal Maps from Henry and Thorman (2015) and Zuza et aI (2018 2019)
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Carlin-type gold deposit (CTD) at Long Canyon Z
probably mineralized in the Eocene at depths of < 5km
Available evidence suggests range exhumation started in |
late Oligocene-Miocene—after Eocene mineralization—so ,""
deep burial models would require mineralization at depths
>15 km atyplcal of CTDs in Nevada
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https://www.mining-technology.com/projects/long-canyon-gold-mine-nevada/

Models to account for deep burial

Depth (km)

Overthrusting model Intracontinental subduction
(Camilleri and Chamberlin, 1997) (Lewis et al., 1999; McGrew et al., 2019)

subduction ceases rapidly
to the north and south

0 ~
zpPz e
detachment
— gn may reactivate
e subduction zone
30 - _ -

Issues with these models include:

(1) spatially isolated high strain localization that is not observed elsewhere in NV geologic record; (2) relatively cold burial;
(3) not recorded in regional erosion/unconformity compilations (e.g., Van Buer et al., 2009; Long, 2012); (4) requires perfect
detachment reactivation to leave no trace (i.e., structures tend to variably plunge/dip and it is hard to believe there is no
record); and (5) analogous structures imaged via seismic reflection profiels in other orogenic plateau hinterlands do not exhibit

these geometries (e.g., Sinoprobe profiles in China, Wang et al., 2011 EPSL or Li et al., 2018 EPSL).



In summary, we attribute this disconnect between recorded peak pressures
and field relationships to reflect non-lithostatic pressure conditions
Almost all published overpressure models apply in the Cordillera core complexes (there was no time to go into all

details of the geology so here is a summary) and may be additive in their effects
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Non-lithostatic pressures may arise from a variety of published or unrealized

mechanisms. Here, we conclude by suggesting this as a possibility, rather than continuing the
argument that either (1) field geologists are missing major structures, or (2) petrologists are botching
calculations.
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A final consideration is that this region was adjacent to a thickening orogenic

plateau in the Mesozoic (i.e., during peak P):

There is growing literature of discussing the differential stress (strength) and non-lithostatic stress
state adjacent to thickened crust with GPE variations (e.g., Lechmann et al., 2014; Schmalholz et al.,
2014, 2018)
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Sources for P-T constraints
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* Ruby Mountain-East
Humboldt Range 10

« Hurlow et al. (1991), Hodges et
al. (1992), Hudec (1992),
Jones (1999), McGrew et al.
(2000), Hallett and Spear
(2014, 2015), Wills (2014),
unpublished QuiG data

* Northern Snake Range
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