"Bare soil" detection addressing agricultural production optimization throughout the year: case study in Emilia Romagna using Sentinel-2 images.

<u>Nicolas Greggio¹</u>, Martina Cimatti¹, Andrea Spisni², Luca Domenico Sapia², Andrea Baraldi³, Andrea Contin¹, Diego Marazza¹.

¹ CIRSA - Inter-Departmental Centre for Research in Environmental Sciences University of Bologna, via S. Alberto 163, 48123 Ravenna (Italy)

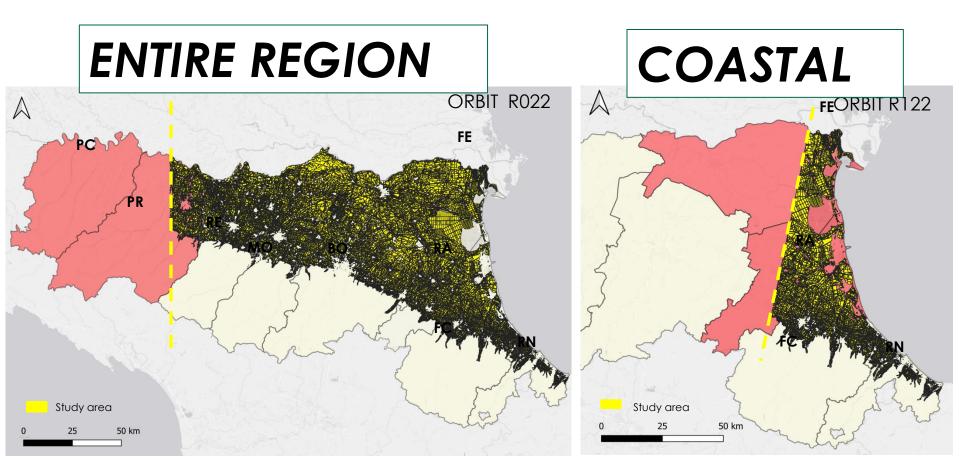
² Research, Development and Remote Sensing Unit, ARPAE Regional Agency for Health Prevention and Environmental Protection and Energy in Emilia-Romagna, Bologna, Italy

³ Italian Space Agency (ASI), Roma 00133, Italy

Objectives

Identification and development of a methodology for bare soil (BS) mapping: case study Emilia Romagna Region (Italy)	2 Explore a scenario of agronomic valorization with dedicated non-food crops for energy production
How much BS is available?	How much energy is achievable from these BS?
When and for how many times?	
Does exist a geographic distribution of BS?	
How big are the BS plot?	

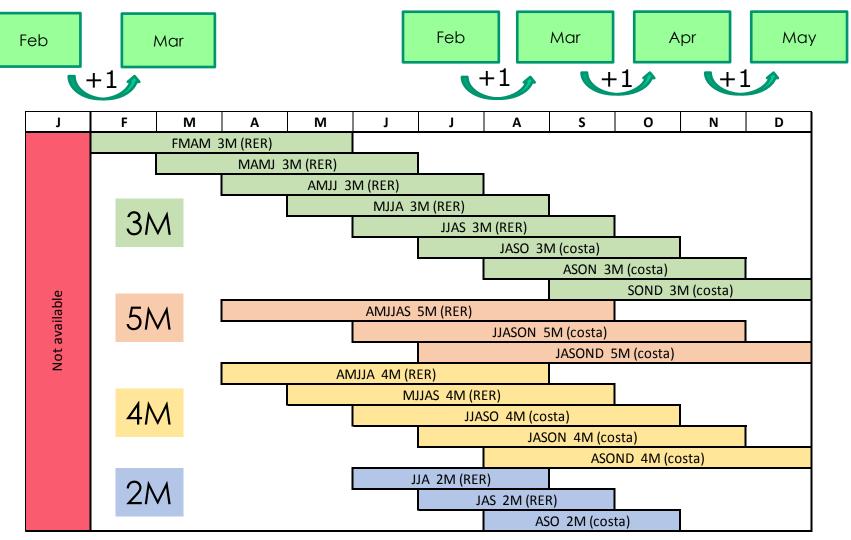
What is BS?

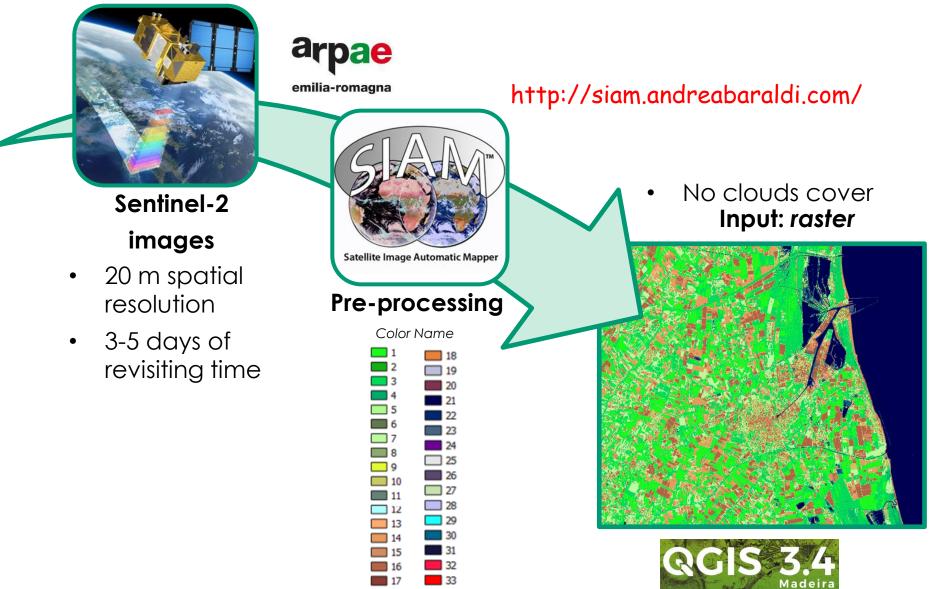

<u>Bare soil (BS): plot of land worked but not cultivated, left uncovered or with</u> <u>any plant residues from the previous crop in the period between sowing and</u> <u>the next crop and which does not give agricultural income.</u>

Why study BS?

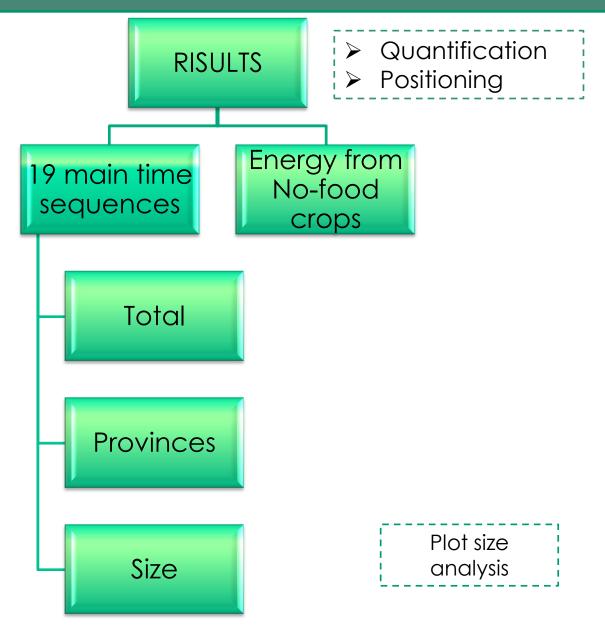
- Optimize agricultural production
- Reduce nutrient leaching
- Investigate possible enhancement scenarios by knowing the available surfaces
- Addressing agricultural policies with positive effects on different stakeholders

Study area


Emilia Romagna agricoltural area corresponds to southern part of the Po Plain


Investigated temporal sequences (2017)

Having two months "BS" means have at least one month "BS" (30 days)


 $3M \rightarrow 4$ consecutive images with detected BS

Operative procedure

Results and Discussion

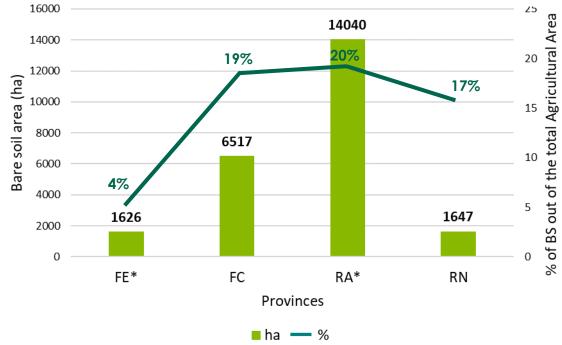

Example for March-April-May-June

50 km

25

MAMJ Regional extension

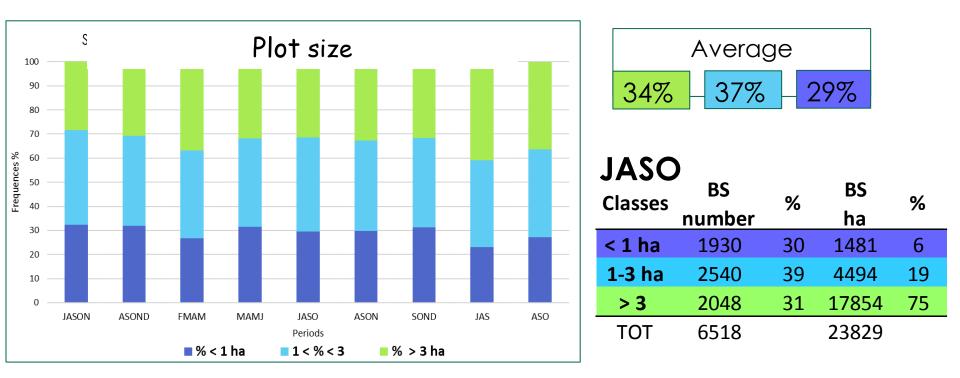
Extension of BS (hectares)



Example for July-August-Sept.-Oct.

JASO Coastal extension

Extension of BS (hectares)

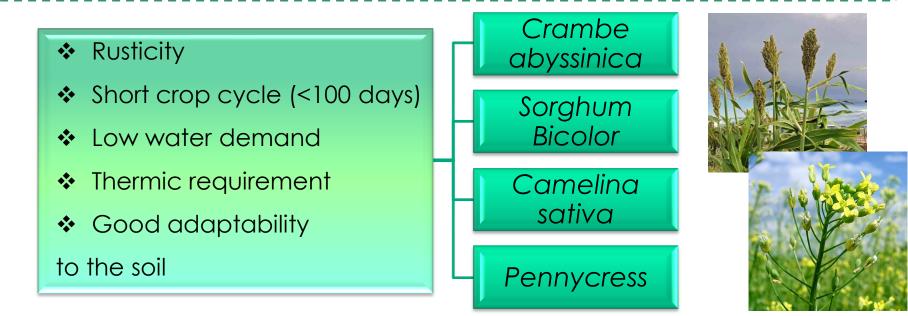

50 km

Results for 19 main time sequences

% of BS for Provinces and total area

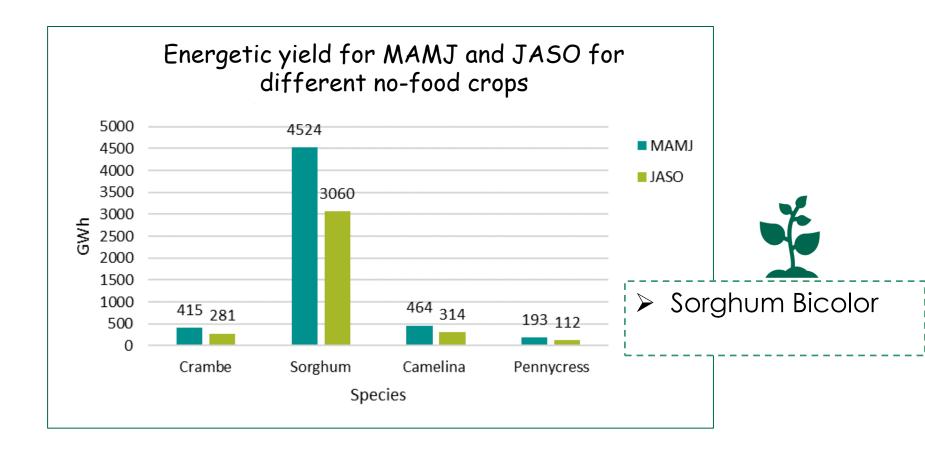
{	5 Months			4 Months —					3 Months									2 Months		
%	AMJJAS	JJASON	JASONE	AMJJA	MJJAS	JJASO	JASON	ASOND	FMAM	MAMJ	AMJJ	MJJA	JJAS	JASO	ASON	SOND	JJA	JAS	ASO	
RN	0.6	0.3	2.7	0.9	0.7	0.9	4.0	4.2	4.7	2.3	1.5	1.1	1.6	16.8	6.7	4.7	2.4	24.1	25.4	
FC	0.7	0.7	5.4	1.2	0.9	1.3	8.6	9.1	6.6	3.2	1.7	1.5	1.8	19.1	14.6	10.7	2.8	22.6	31.0	
RA	0.4	0.8	13.1	0.8	0.5	1.0	10.8	22.2	11.0	4.9	1.2	0.9	1.1	20.2	27.9	26.8	1.7	20.3	34.7	
FE	0.2	0.2	1.9	0.3	0.2	0.3	0.5	4.0	21.6	9.8	0.6	0.4	0.7	4.0	5.0	8.2	1.1	16.4	8.8	
BO	0.2			0.3	0.2				14.3	3.3	0.5	0.4	0.7				0.9	25.7		
МО	0.2			0.3	0.3				12.1	2.9	0.4	0.4	1.3				2.0	20.6		
RE	0.1			0.1	0.2				5.4	1.4	0.3	0.2	1.1				1.6	11.8		
PR	0.2			0.2	0.3				7.9	3.5	0.6	0.3	1.4				1.7	15.6		
Total BS (ha)	1599	901	12026	2667	2083	1323	15442	20673	93519	35234	4600	3503	6813	23829	27174	26143	10204	131130	40843	
% of total BS out of total AA	0.2	0.6	7.8	0.4	0.3	0.9	10.0	13.4	13.7	4.7	0.7	0.5	1.0	15.4	17.6	16.9	1.5	19.2	26.4	
 <p< th=""><th colspan="8">Optimal growing</th><th colspan="3">Too short</th></p<>						Optimal growing								Too short						

Plot Size

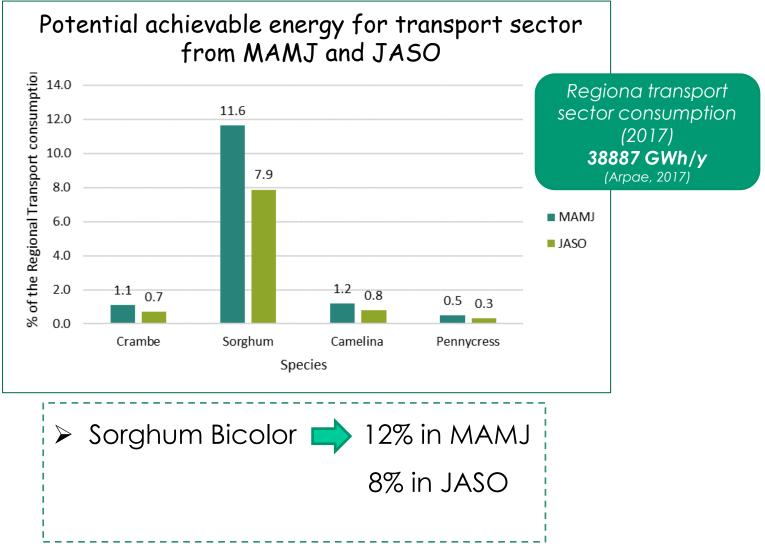


High homogeneity among plots in every considered time sequence

BS energetic valorization


MAMJ e JASO

- Need for efficient solutions in terms of land use and agricultural input, low environmental impact
- New no-food energy crops
- Biogasdoneright® model based on the anaerobic digestion of double crops and by-products



By MAGIC EU Project https://magic-h2020.eu/

BS energetic valorization

BS energetic valorization

Conclusions

- Development of a methodology for BS spatial and temporal mapping
- Different spatial distribution of BS in the Region
- BS quantification identifies two highly performing periods: MAMJ and JASO
- Optimization of BS: a no-food crop generate10% of the annual consumption of the transport sector in the Region, moreover keeping the soil covered prevents different environmental problems
- The methodology is satisfactory, replicable and automatable
- Need access to satellite data and updating of databases in real time