









Assessing the role of a priori user knowledge in climate services perception: An experiment with university students across Europe

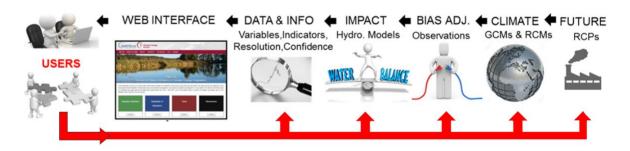
6<sup>th</sup> May 2020

R. Pimentel<sup>1</sup>, MJ. Polo<sup>1</sup>, MJ. Pérez-Palazón<sup>1</sup>, S. Achleitner<sup>2</sup>, M. Diez-Minguito<sup>3</sup>, A. Huber<sup>2</sup>, P. Kruse<sup>4</sup>, A. Lira<sup>3</sup>, J. Lückenkötter<sup>4</sup>, M.H. Ramos<sup>5</sup>

<sup>1</sup> UCO, <sup>2</sup> UIBK, <sup>3</sup> UGR, <sup>4</sup> UGR, <sup>5</sup> INRAE










### Introduction



#### Climate Service Production Chain



- CS users are the crucial agent in the CS production chain
- User role needs to go further than only making use of the CS
- A priori user knowledge (i.e. their background, expectations of CS, previous experiences with CS)
  can condition user role in this co-development process, but usually not considered in techniques to
  collect users feedbacks.
- This work tries to assess the role of user previous knowledge and the perception that users have about Climate Service









# **Student's Experiment Structure**



### Game









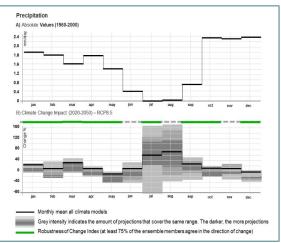
#### **Initial Knowledge:** Basic definitions in CS

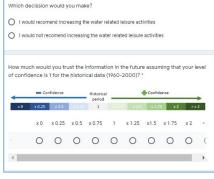
- Climate Service
- Ensemble Mean
- Climate Projection
- Emission Scenario

#### Role Game with 4 level of information


- Ensemble Mean (L1)
- Ensemble Spread (L2)
- Ensemble Intensity (L3)
- Ensemble Robustness (L4)

#### **Evaluation of** decision made:


- Level of trustiness


**Gained Knowledge Assessment:** Basic

definitions in CS



The O lake is an endorheic lake. mainly fed by precipitation. Its water is used for supplying two populations. Moreover, the lake is a touristic area where leisure activities related to water has been growing since 1970 (i.e. river kayaking, canoeing). A new management plan for the lake is going to be designed during the next vears and the managers want this plan to be valid at least until mid-century. You have been hired as expert by the water organism to help them in deciding whether to increase the leisure activities in the lake (i.e. building a nautical club and a recreation area) or not. So far, the water supply to the populations has suffered restrictions only twice since 1960.





# **Preliminary Results**







Did the students change their knowledge regarding basic CS definitions after the GAME?

|                    | TRAINED (55) |          | NON-TRAINED (60) |          |
|--------------------|--------------|----------|------------------|----------|
|                    | Before       | After    | Before           | After    |
| Climate Projection | 20 (36%)     | 31 (56%) | 22 (37%)         | 22 (37%) |
| Emission Scenario  | 25 (45%)     | 28 (50%) | 33 (55%)         | 30 (50%) |
| Models ensemble    | 33 (60%)     | 38 (70%) | 28 (47%)         | 32 (53%) |
| Climate Service    | 37 (67%)     | 37 (67%) | 40 (67%)         | 41 (68%) |

- Trained users improve CS basic knowledge after the activity, the lecture and the guided gaming help for a better understanding.
- Concepts were not clear for stand-alone students, with a general decrease in proportions of right answers after the activity.

## **Preliminary Results**









### Did the different levels of information change the student behavior

regarding decision making?

\* Level of information provided:

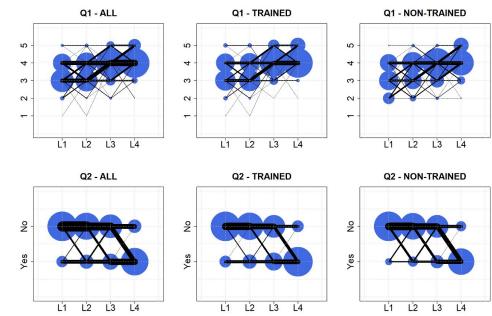
L1: ensemble mean

L2: ensemble mean + spread

L3: ensemble mean + spread + shading

L4: ensemble mean + spread + shading + robustness

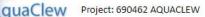
\*\* Questions


Q1: Do you find this information useful? (1-5)

Q2: Would you base your decision on this information?

(YES or NO)

Q3: Which decision would you make? (YES or NO)


Q4: How much would you trust the information in the future assuming that your level of confidence is 1 for the historical data (1960-2000)?(0-2)



- Q1: The change was more constant between levels for the trained group (lines size), while the spread was higher in the non-trained ones (similar sizes in all circles)
- Q2: Decision changes was similar for both trained and non-trained groups

## **Preliminary Results**









### Did the different levels of information change the student behavior

regarding making a decision?



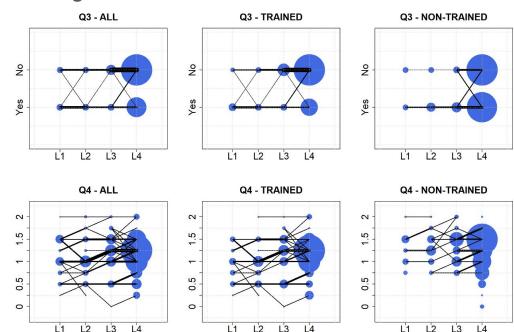
L1: ensemble mean

L2: ensemble mean + spread

L3: ensemble mean + spread + shading

L4: ensemble mean + spread + shading + robustness

\*\* Questions


Q1: Do you find this information useful? (1-5)

Q2: Would you base your decision on this information?

(YES or NO)

Q3: Which decision would you make? (YES or NO)

Q4: How much would you trust the information in the future assuming that your level of confidence is 1 for the historical data (1960-2000)?(0-2)



- Q3: In general decision made does not change during the experiment, the initial decision is kept during the experiment.
- Q4: Non-trained group trusts more the information, however, their concepts were less clear.











## **Thanks**

This work was funded by the project AQUACLEW, which is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Commission [Grant 690462].







