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Background

CCS facilities around the world.
(source: global status of ccs, http://www.globalccsinstitute.com)

• 19 operating large-scale facilities
• 2 in Norway

• More than 25 Mtons stored in 2019

• CCS (carbon capture and storage) is 
gathering pace, but the rates are still 
insufficient to make a significant impact 
on green house gas emissions

• There is a lot at stake. CCS requires high 
investments

Cost efficiency, including in monitoring is a must
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Background
Geophysical monitoring

• Important for conformance and containment 
verification 
• conformance:  CO2 behaviour in the storage site is consistent with model-

based forecasts 
• containment: demonstrate security of CO2 storage 

• Geophysical monitoring is very valuable but can be 
costly.
• Example: Time lapse 3D seismic

• Acquire data if the value is larger than the acquisition 
cost, need for:
• Dealing with uncertainties
• The right kind of information
• The right amount of information

Criteria for information to be valuable
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Why VOI  analysis?

• VOI has the potential to support decision making around 
information gathering

• It allows the decision maker to perform a reasonable evaluation 
before the information is purchased and therefore revealed

• If the decision maker can model value using monetary units, then 
VOI is also in monetary units

• Can incorporate the spatial dependence of subsurface 
uncertainties, the gathered information, and the decision situation

Frame the decision 
situation

Evaluate information 
gathering schemes

Build a spatial model

Perform VOI analysis

Framework for VOI analysis
(Eidsvik et al., 2015)Robust and general framework to support 

decision making 

Value of information (VOI)
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• We need to define:
• Alternatives: 𝑎𝑎 ∈ 𝐴𝐴
• Uncertainty/Scenario class: 𝑥𝑥 ∈ Ω
• Time (if the VOI analysis is time dependent): 𝑡𝑡
• Value derived from the decision situation: 𝑣𝑣𝑡𝑡(𝑥𝑥, 𝑎𝑎)
• Purchased data (at time 𝑡𝑡): 𝒚𝒚𝑡𝑡

• The VOI is defined by the difference between posterior (𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 ) and 
the prior value (𝑃𝑃𝑃𝑃𝑡𝑡). 

Value of information
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• The posterior value can be hard to calculate with 
imperfect information

• Monte Carlo sampling  and approximate conditional 
probabilities �𝑃𝑃(𝑋𝑋 = 𝑥𝑥|𝑦𝑦𝑡𝑡) can be used to 
approximate 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 and calculate  the VOI

Value of information
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• Possible storage candidate for the Norwegian 
full-scale CCS project

• Possible injection @ 1200-1500m deep in 
Sognefjord, Fensfjord or Krossfjord formations 
under Draupne shale overburden.

• Uncertainties related to:
• Reservoir and caprock properties

• Fault properties

Case study
Smeaheia

Location of Smeaheia
area. The top of the
Fensfjord (reservoir) 
formation is displayed

Example of a 2D extracted seismic section
from the Smeaheia area. The main faults, inter-
preted horizons, and well locations are indicated.

© Authors. All rights reserved.



• An operator wants to inject CO2 for a period of 25 years.

• It is uncertain whether the site will leak or not

• During this injection period, the operator has the possibility to 
do one seismic survey and decide whether to continue or stop 
the injection.

• When should the survey be done?

Case study
Decision problem

Time dependent VOI analysis of seismic data 
related to leakage detection.
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• 25 years injection time 

• One unit injected per year

• Fixed cost if injection is done: 5

• Cost of injecting per unit CO2 : 0.2

• Fixed cost if leakage: 2

• Fine if leakage per unit of injected CO2 : 1.2

• Cost of not injecting per unit CO2 : 0.8

Case study
Decision problem

• Alternatives: 𝑎𝑎 ∈ 𝐴𝐴 = 0,1 , to continue (𝑎𝑎 = 1) or 
to stop the injection (𝑎𝑎 = 0) at time t

• Uncertainty/Scenario class: 𝑥𝑥 ∈ Ω = 0,1 , whether 
CO2 will leak (𝑥𝑥 = 1) or not (𝑥𝑥 = 0) 

• Time (if the VOI analysis is time dependent): 𝑡𝑡 ∈
(0,25)

• Value derived from the decision situation: 𝑣𝑣𝑡𝑡(𝑥𝑥, 𝑎𝑎)
• Purchased data (at time 𝑡𝑡): 𝒚𝒚𝑡𝑡 seismic data

Many assumptions and 
simplifications
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Case study
Decision problem

• Alternatives: 𝑎𝑎 ∈ 𝐴𝐴 = 0,1 , to continue (𝑎𝑎 = 1) or 
to stop the injection (𝑎𝑎 = 0) at time t

• Uncertainty/Scenario class: 𝑥𝑥 ∈ Ω = 0,1 , whether 
CO2 will leak (𝑥𝑥 = 1) or not (𝑥𝑥 = 0) 

• Time (if the VOI analysis is time dependent): 𝑡𝑡 ∈
(0,25)

• Value derived from the decision situation: 𝑣𝑣𝑡𝑡(𝑥𝑥, 𝑎𝑎)
• Purchased data (at time 𝑡𝑡): 𝒚𝒚𝑡𝑡 seismic data

Values before any monitoring data is purchased
• 𝑣𝑣𝑡𝑡 𝑥𝑥 = 0,𝑎𝑎 = 0 = −5 − 0.2t − 0.8 25 − t = −25 + 0.6t

• 𝑣𝑣𝑡𝑡 𝑥𝑥 = 1,𝑎𝑎 = 0 = −5 − 0.2t − 0.8 25 − t − 2 − 1.2t = −27 −
0.6t

• 𝑣𝑣𝑡𝑡 𝑥𝑥 = 0,𝑎𝑎 = 1 = −5 − 0.2 ∗ 25 = −10

• 𝑣𝑣𝑡𝑡 𝑥𝑥 = 1,𝑎𝑎 = 1 = −5 − 0.2 ∗ 25 − 2 − 1.25 ∗ 25 = −42

Objective: compare the expected values with monitoring 
data to the one without monitoring data
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1. Reservoir simulation

2. AVO attributes

3. ML 

4. VOI analysis
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Case study
Workflow



• MRST: MATLAB Reservoir Simulation Toolbox
• Sognefjord formation
• Vertical equilibrium model
• 1000 realisations:

• Reservoir boundaries set to open (leaking fault) or closed (sealing 
fault)

• Uncertain porosity and permeability variables
• Mean and variance estimated from log data.

• Spatial correlation introduced

Workflow
Reservoir simulation

Target zone
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Workflow: Saturation maps – examples

© Authors. All rights reserved.

Closed boundaries

Open boundaries



• AVO attributes generated along the top reservoir zone
• Gassmann fluid substitution (from saturations to elastic 

properties)
• Noise (variance) added  for both attributes

• Two different datasets:
• R0 (zero offset reflectivity) attribute

• R0 and G (AVO gradient) attributes (two attributes per cell)

Workflow
AVO attributes
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Workflow
AVO attributes

Seismic attributes

sat: CO2saturation

Not straightforward  to 
differentiate CO2 saturation 
levels with AVO attributes 

© Authors. All rights reserved.

Expected seismic AVO response (dots) for different levels of CO2 saturation along 
with 50 % and 80 % uncertainty contours in the seismic AVO observation model.



Workflow: R0 maps– examples
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Workflow: G maps– examples
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• Objective: classify probabilities of seal and leak scenario 
( �𝑃𝑃 𝑋𝑋 = 𝑥𝑥 𝑦𝑦𝑡𝑡 , x ∈ 0,1 ) needed for the PoV calculation

• We split the data generated through reservoir simulation 

and AVO modelling into training (80%) and testing (20%) dataset
• Training can be performed using different ML algorithms 

• Input data: AVO attribute(s) in each grid of the top of the 
reservoir

• Output: seal or leak class by comparing 
�𝑃𝑃 𝑋𝑋 = 1 𝑦𝑦𝑡𝑡𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎 �𝑃𝑃 𝑋𝑋 = 0 𝑦𝑦𝑡𝑡𝑏𝑏

Workflow
Machine learning
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Workflow
Machine learning

• Accuracy score (ACC)  to evaluate the 
performance of the prediction

𝐴𝐴𝐶𝐶𝐶𝐶 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑇𝑇
• Methods tested:

• Gaussian process (GP)

• K-Nearest neighbours (kNN)

• Random forest (RF)

• Neural network (NN)

The accuracy values plotted as a function of the year of
monitoring
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• Increase and decrease in all models

• Optimum time around year 2026-2029

• Largest value provided by the NN

• With both seismic attributes, the 
optimal monitoring time is shifted 
towards earlier times  possible to 
detect leakage earlier with more info

Results
VOI for the different models

© Authors. All rights reserved.



• Higher VOI with less noise

• Shift towards earlier times for GP, 
KNN, and NN

• Little changes with NN indicating 
possible overfitting

Results-VOI for the different 
models- higher signal to 
noise ratio (SNR)
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• More realistic model:
• Grid size relatively large

• Include a more detailed reservoir topography

• Smaller blocks would likely lead to higher detail 
in the PDE solver and better separation (and 
hence classification)  between  open/close 
boundary realizations.

Discussions/perspectives

To be analysed against the computational burden to generate 
enough realizations
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Summary

• Proposed workflow for CO2 storage  includes 
reservoir modelling, geophysical and rock 
physics analysis, VOI with elements of ML

• Simplified case study at Smeaheia with seismic 
data
• MRST for reservoir modelling

• Random porosity/permeability perturbations

• Leaking/non leaking scenarios

• Various ML techniques tested 
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• More realistic model
• Possibility to study

• Sensitivity to compartmentalization 

• 3D connections of volumes

• Beyond binary leak or seal input 
• Could be generalized to partial leakage near the fault

• More complex decision problem, including options to:
• Increase/decrease injection rate 

• Produce water

• Study sensitivity to the decision framing parameters

Discussions/perspectives
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