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Objectives 

The main objective of the study is to 
perform an advanced exploratory 
analysis of air pollution multivariate 
data. Monitoring stations represent 
different regions and land use zones 
(urban, rural, etc.)      

 

The main tools applied include: 
analysis of statistical and fractal 
properties of the series using 
Morisita index , data representation 
via features and time series 
clustering.  

2 



Examples of time series for all stations (hourly data from 2017, NABEL Swiss 
monitoring network- 16 stations): O3 (left, below), NOX (right). Typical 
properties:   complex dynamics, periodicities, outliers, missing values.. 
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Morisita index 
• There are many measures used to quantify  the 

complexity of time series: entropy, (multi)fractals, time 
series features, etc. In the present research the Morisita 
index (MI) is introduced to time series. Originally, index 
was proposed to study clustering of spatial data. Later, it 
was generalised to the multiple point index and it was 
shown that MI can be efficiently used to estimate 
intrinsic dimension [1] of data and to study feature 
selection problems in machine learning [2].   
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1. A new estimator of intrinsic dimension based on the multipoint Morisita index 
Pattern Recognition, v.48, 2015, p. 4070, J. Golay, M. Kanevski 
 
2. Feature selection for regression problems based on the Morisita estimator of intrinsic 
dimension Pattern Recognition, v. 70, p. 126, J. Golay, M. Leuenberger, M.  Kanevski 



Intrinsic dimension 

• If we consider measurements of air pollution as points embedded 
into 16 dimensional Euclidean space, we can estimate an intrinsic 
dimension (ID) of the corresponding manifold, on which they 
evolve. It helps to quantify the complexity of the complete 
pollution pattern and «redundancy» in data. 

 

• There are many methods to estimate ID [1], including fractal 
approach, nearest neighbour methods, entropies, etc.  In the 
present research we  use a method based on Morisita index.  The 
corresponding R package «IDmining»  can be found on  CRAN.  

 

• The method is quite similar to box counting approaches in fractal 
theory.  
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where ni  (i=1,2...,Q) is the number of points in the i-th cell, and N is the total number 

of points. Interpretation: Normalized probability to find m-points in a cell at a given 
scale. Classical Morisita index: m=2 
 

Multipoint Morisita 
index (m-Morisita): 

Morisita index is calculated by covering a data pattern by a changing grid (scale = 
s1,s2,…)  and counting the number of points in each cell, see formula above. In the 
present case 2d space is the following [t,f(t)].   

s1 s2 



An example of ID and fractal dimension estimates for Lausanne O3 
raw and shuffled data using MI. Figures: log(MI) vs log(scale)   

7 



ID estimates of the monitoring  
Euclidean dimension (ED) equals to the number of stations considered 

•  "The ID estimate for NO2 equals to 6.54 (ED=16)"    

• "The ID estimate for O3 equals to 5.37 (ED=16)"  

• "The ID estimate for PM2.5 equals to 3.66 (ED=9)"  

•  "The ID estimate for NOX equals to 5.53 (ED=16)“ 

• "The ID estimate for SO2 equals to 3.15 (ED=9)“ 

• Randomly generated pattern in 9d with the same number of 
points, gives a value of ID ≈ 9.  

• If we add a randomly generated  time series to PM2.5 data 
(ED=9+1), the ID becomes equal to 4.67. The difference is ~1. 

It is evident, that all ID dimensions are smaller than the Euclidean 
dimensions.   
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Redundancy in data 

• Redundancy study deals, in part, with the analysis of nonlinear 
dependencies in data. Redundancy is an important concept in 
feature selection tasks in machine learning. Morisita based  ID 
estimate was proposed to study the redundancy  in high 
dimensional data (J. Golay, M. Kanevski “Unsupervised feature 
selection based on the Morisita estimator of intrinsic dimension” 
Knowledge-Based Systems, 2017, pp. 125-134) .  

 

The results are presented (next slide) via ranking of the variables 
according to their redundancy: from the less redundant (left) to the 
most redundant (right). Redundant variable is, basically, the variable 
that can be represented as a linear/nonlinear  function   of non 
redundant variables. Such analysis can be interesting, for example,  in 
constructing nonlinear multivariate models of time.  
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Time series representation via features 

• Extraction of features from complex times series 
is a popular approach in clustering and 
classifications. Hundreds, even thousands, of 
features were proposed [1]. Some features can 
well discriminate time series, which considerably 
improves clustering tasks [2].  
 

1. B.D. Fulcher, M.A. Little, N.S. Jones Highly comparative time-series 
analysis: the empirical structure of time series and their methods. J. 
Roy. Soc. Interface 10, 83 (2013). 
2. F. Amato, M. Laib, F. Guignard, M. Kanevski. Analysis of air pollution 
time series using complexity-invariant distance and information 
measures. Physica A: Statistical Mechanics and its Applications, 
v.5471, 2020 
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Scatterplot matrix of the features extracted from O3 time series (trend, 
spike, linearity, etc.) using R package «tsfeatures»  
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Conclusions 

• Nowadays, there is a huge variety of time series (TS) 
methods and tools efficiently applied in intelligent 
exploratory data analysis (IEDA) 

• IEDA is an important (in many cases the most 
important) phase in TS analysis, modelling and 
forecasting.  

• In the present paper real data on air pollution are 
considered with a major contribution in the 
introduction of the  methods based on Morisita index 
to TS. This approach has an important potential in 
quantifying the complexity and dependencies both in 
univariate and multivariate time series     
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