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Study Overview
• Several studies have recognised that the performance of operational weather 
forecasting systems depends on the prevailing atmospheric circulation.

• Therefore, forecasters often adjust their predictions depending on the synoptic-scale 
behaviour of the atmosphere.
• A more objective approach would be to incorporate the circulation directly into the 

statistical post-processing model.

• To do this, we propose an analogue approach based on atmospheric regimes.

• The approach can be expressed more generally as a mixture-model forecast, which 
can incorporate uncertainty regarding the prevailing regime.

• This is applied to wind speeds from a quasigeostrophic model, and reforecast data. 

• The full study is available in Allen et al. (2020)

https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3806


Key Results
• Incorporating regime information can yield significant improvements upon conventional 
post-processing methods if the climatological wind speed varies between the different 
weather regimes.
• The conventional post-processing method is not calibrated conditional on the regimes.

• If the wind speeds do not depend on the regimes then the regime-dependent approach 
reverts back to the original post-processing method.
• It should always perform at least as well as the original post-processing, provided sufficient data is 

available.

• Improvements are largest at longer lead times, when the raw ensemble is less informative, 
but are only available if the future regime can be accurately predicted.

• Forecasts improve most when the prevailing regime is associated with wind speeds that 
differ most from climatology.
• This suggests predictions of extreme weather events could benefit from regime information.



Statistical Post-Processing
• Post-Processing exploits the relationship between the Numerical Weather 
Prediction Model (NWP) model and the atmosphere in the training data to 
address systematic errors in ensembles

• What if the relationship changes under different circumstances?

• If these circumstances could be identified then they could be incorporated into 
post-processing models



Grouped Statistical Post-Processing
• Forecast-observation pairs (y, 𝒇)in the training data can be assigned to a group

𝑦1, 𝒇1 A

𝑦2, 𝒇2 A

𝑦3, 𝒇3 B

𝑦4, 𝒇4 A

…

(𝑦𝑁−1, 𝒇𝑁−1) B

(𝑦𝑁, 𝒇𝑁) B

• Groups should be chosen such that different model errors are expected in each group

𝑌|𝒇, 𝐴 ~ 𝑔𝐴

𝑌|𝒇, 𝐵 ~ 𝑔𝐵

• Separate post-processing 
models can then be applied to 
forecasts in each group

• 𝑔𝐴 and 𝑔𝐵 could be predictive 
distributions, for example,
 With different post-

processing coefficients
 Or even distinct underlying 

parametric families



• Atmospheric circulation is the movement of air in the atmosphere

• Regimes are patterns in the circulation that exhibit:
◦ Persistence (relative to individual weather events) 

◦ Recurrence

◦ At fixed geographical locations

• The atmosphere can be understood as a flow driven from one metastable 
equilibrium to another (Charney and Devore, 1979)

• Therefore, separate post-processing models can be applied to forecasts 
depending on the prevailing weather regime

Weather Regimes

https://journals.ametsoc.org/doi/abs/10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2


• Weather regimes have a large impact on local weather systems

• The forecasting ability of the NWP model changes when the atmosphere resides in different 
regimes (Ferranti et al., 2015)

• Weather regimes implicitly incorporate information regarding spatial and multivariate relationships 

• “certain weather impacts (such as coastal flooding, extreme heat and poor air quality) are more 
likely to occur during the occurrence and persistence of a few specific weather patterns”
(Met Office website, 2016; Neal et al, 2016)

Motivation

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2411
https://www.metoffice.gov.uk/research/news/2016/new-weather-patterns-for-uk-and-europe
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/met.1563


Ensemble Model Output Statistics (EMOS)
• For exchangeable ensemble members 𝑓𝑗 𝑗 = 1,… ,𝑀 with ensemble mean  𝑓 and ensemble 
variance 𝑠2, wind speed 𝑦 can be modelled using a truncated Normal distribution:

where α, 𝛽, γ, 𝛿 are parameters to be estimated

• Parameters are estimated here using maximum likelihood estimation over a training data set of 
historical forecast-observation pairs

Thorarinsdottir and Gneiting. (2010)

𝑦|𝑓1, 𝑓2, … , 𝑓𝑀 ~ 𝑁0(𝛼 + 𝛽  𝑓, 𝛾 + 𝛿𝑠
2)

https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-985X.2009.00616.x


Regime-dependent EMOS
• For exchangeable ensemble members 𝑓𝑗 𝑗 = 1, … ,𝑀 with ensemble mean  𝑓 and ensemble 
variance 𝑠2, wind speed 𝑦 can be modelled using a truncated Normal distribution that depends 
on the weather regime:

where 𝑟 is the prevailing atmospheric regime

• We now have a set of parameters for each regime α𝑟 , 𝛽𝑟 , γ𝑟 , 𝛿𝑟 𝑓𝑜𝑟 𝑟 = 1,… , 𝑅

• Parameters α𝑟 , 𝛽𝑟 , γ𝑟 , 𝛿𝑟 are estimated using maximum likelihood over all forecast-observation 
pairs in the training data that are assigned to regime 𝑟

• This can be thought of as a regime-based analogue approach (Barnes et al. 2019)

Allen et al. (2019)

𝑦|𝑓1, 𝑓2, … , 𝑓𝑀, 𝑟 ~ 𝑁0(𝛼𝑟 + 𝛽𝑟  𝑓, γ𝑟 + 𝛿𝑟𝑠
2)

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3632?casa_token=7UZap2QdU3kAAAAA:JyZHTi8AlmrFPnmXHq7a98muwUZcpY0cUMv23bSZ1Qi9yte-MYsfutPCh4f6SVOJS4hJAech6p0TVszT
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3638?casa_token=YulqYbuIRbsAAAAA:DdQtF3PpsH8-SAklNPqsgL0ZrtuXm-8ETHu_G3zykEPgTjUwdJQSbg2fBgrLgyALYzP2XZ92m0d1bZL4


Regime-dependent EMOS
• There is typically uncertainty regarding the atmospheric regime at the forecast validation time

• To account for this, model the wind speed using a weighted mixture of predictive distributions:

where 𝑤(𝑟) specifies the probability of the atmosphere residing in regime 𝑟 at the validation time 

• The weight is a function of the prevailing atmospheric flow, not just a parameter

• The model on the previous slide is a specific case when the regimes are known exactly – the weights 
in this case are indicator functions

• If the weight is not an indicator function (i.e. regimes are not known with certainty) then all 
parameters are estimated simultaneously using maximum likelihood over all available training data

𝑦|𝑓1, 𝑓2, … , 𝑓𝑀, 𝑟 ~ 

𝑟=1

𝑅

𝑤(𝑟)𝑁0(𝛼𝑟 + 𝛽𝑟  𝑓, γ𝑟 + 𝛿𝑟𝑠
2)



Mixture-model weights
• The mixture-model weight 𝑤(𝑟) can be thought of as a prediction of the future regime

• We consider three choices of the weight:

1. The regime at the forecast initialisation time
o i.e. a persistence forecast for the future regime
o Weight is an indicator function since the regime can be determined from current analyses

2. The proportion of ensemble members predicting each regime at the validation time
o Weight is not an indicator function so all parameters are estimated simultaneously

3. The regime that actually occurs at the forecast validation time
o This is not known in practice, but is available when working with historical data
o It provides an upper bound on the improvements gained from incorporating regimes
o Weight is an indicator function since the regime can be determined from observations



Outline
• We apply these approaches to wind speed forecasts in two scenarios:

o Data from a quasigeostrophic model of the Northern Hemisphere

o Data from the National Oceanic and Atmospheric Administration’s (NOAA) Reforecasting project

• Forecasts are assessed using the continuous ranked probability score (CRPS)
◦ And the associated skill-score (CRPSS), using the original truncated Normal (TN) approach as a 

reference forecast

• Regime-dependent truncated Normal (RDTN) approaches use a mixture-model with the:
◦ Regime at the initialisation time (-init)

◦ Proportion of ensemble members predicting each regime at validation time (-ens)

◦ True regime at validation time (-true)

as regime weights



• Use a three-layer quasigeostrophic model truncated at wavenumber 21 (Kwasniok, 2019)
o Complex enough to generate atmospheric patterns that appear in climate reanalyses

o Simple enough to allow a large amount of data to be simulated

• The same QG model truncated at wavenumber 19 is used to generate forecasts

• The training and test data both consist of 15 years worth of daily forecast-observation pairs

• Post-processing is performed locally at 1024 grid points in the Northern Hemisphere

Quasigeostrophic (QG) model

https://ore.exeter.ac.uk/repository/handle/10871/40518


• We identify 4 regimes by fitting a hidden Markov model to 500mb streamfunction anomalies

• Regime centres look similar to the positive and negative phases of the Arctic Oscillation (AO) and 
Pacific-North America pattern (PNA)

QG model

Blue (red) regions 
represent negative 
(positive) 
streamfunction
anomalies



• Wind speeds are least predictable over 
the Pacific and Atlantic basins

• Skill scores for regime-dependent 
methods are close to zero at locations 
where the regimes have little effect on 
the wind speeds

• Large improvements are available at 
locations surrounding the centres of 
the regimes when using the true 
regime at forecast validation time

• These improvements are much smaller 
when the future regime is unknown

QG model

Lead time: 6 days



• Consider forecasts at one location in the Atlantic Ocean where the wind speed varies 
considerably between the AO regimes. 

• Improvements increase with lead time, but only when the true regime is known.
o RD methods can improve forecasts by almost 5% upon conventional post-processing

QG model

Climatological wind speed distributions CRPSS against lead time



• Improvements are largest in regimes for which the wind speed differs most from 
climatology
o Up to 12% improvements for forecasts when the AO- regime occurs at validation time

o Up to 6% improvements for forecasts when the AO+ regime occurs at validation time

• The AO+ regime is synonymous with high wind 
speeds at this location
o Regime-dependent methods could produce more 

accurate forecasts of more extreme weather events

• The regime-dependent approach does not perform
worse than conventional post-processing even for 
regimes that have little effect on the wind speeds

QG model

CRPSS against lead time for RDTN-true in each regime



• Rank and PIT histograms graphically assess probabilistic forecasts
◦ Uniform histograms (bars lying close to red line) indicate forecasts are calibrated

• U shaped histogram shows the raw ensemble forecast is underdispersed

• All post-processing methods produce forecasts that appear calibrated

QG model



• But the TN approach is oppositely biased in 
the AO- and AO+ regimes
o The conventional post-processing is not 

calibrated with respect to the regimes

• Calibrating forecasts in each regime 
separately alleviates these errors

• If the regime at the validation time is not 
predicted well (as for RDTN-init and 
RDTN-ens here) then biases are similar to 
those for TN

QG model



• Forecasts from the National Centers for Environmental Prediction’s (NCEP) Global Ensemble 
Forecasting System (GEFS) (Hamill et al. 2013)

• Post-processing is performed locally at 1353 grid points in the Euro-Atlantic region 
◦ A subset of the domain on which regimes are identified

• Training data is 15 winter seasons (Nov –Mar) between 1985 and 1999

• Test data is 10 winter seasons between 2000 and 2009

GEFS Reforecasts

https://journals.ametsoc.org/doi/full/10.1175/BAMS-D-12-00014.1


• We identify 4 regimes by applying k-means clustering to 500mb geopotential height anomalies

• Regime centres look similar to the positive and negative phases of the North Atlantic Oscillation 
(NAO), an Atlantic Ridge (AR) and European Blocking (EB; or a Scandinavian High)

GEFS Reforecasts

Blue (red) regions 
represent negative 
(positive) height
anomalies



• CRPS is larger over sea than land, and 
is particularly large close to Iceland, a 
mode of North Atlantic storm-track 
variability 

• Significant improvement is only 
available when regimes affect local 
wind speeds

• Large improvements are again seen 
only when the regime is known 

GEFS Reforecasts

Lead time: 7 days



• Consider forecasts at one location - close to Bergen, Norway

• High wind speeds typically occur in the positive phase of the NAO, and low wind speeds in the NAO-

• CRPS for the raw ensemble changes between the regimes
o Highest when the NAO+ occurs and lowest for the AR regime

o Suggests model biases that differ between the regimes

GEFS Reforecasts

CRPS NAO+ NAO- AR EB Total

Raw Ensemble 1.44 1.18 1.06 1.24 1.23

Climatological wind speed distributions

CRPS for raw ensemble forecasts in each regime



• Improvements decrease with lead time for RDTN-init and RDTN-ens, as forecasts of the regime 
become worse
o Skill-score increases with lead time when the regime at validation time is known

• Longer-range forecasts benefit most in the NAO+, synonymous with above average wind speeds 

GEFS Reforecasts

CRPSS against lead time CRPSS against lead time for RDTN-true in each regime



Conclusions & Extensions
• Incorporating atmospheric circulation can improve statistical post-processing methods

• The method here uses a mixture of truncated Normal predictive distributions
◦ This is more complex and requires more training data, but adds flexibility to the post-processing model

◦ Study using a high-resolution model for which reforecasts are not available is currently ongoing

◦ Different predictive distributions could be used in different regimes 

• Little improvement is expected when the regimes don’t affect the local wind speeds

• Not sufficient to know the regime at the forecast initialisation time
◦ Require a more informative prediction of the future regime

• More improvements available at longer lead times
◦ Post-processing should issue the climatological distribution as the raw forecast becomes uninformative

◦ Regime-dependent methods issue the climatological distribution within each regime



Conclusions & Extensions
• Forecasts improve most when the prevailing regime corresponds to wind speeds that differ 
largely from climatology

◦ Forecasts of extreme weather events may benefit from including regime information

• The mixture-model approach extends to other ways of grouping the forecasts
◦ When would we most expect biases to occur?

◦ Optimum choice, and number, of regimes may change for different variables and locations

• Regimes here have the benefit that they are physically meaningful
◦ They can account for relationships between different weather variables and spatial locations

◦ Sensible for use within multivariate post-processing frameworks
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