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Why Study the mid-
(m

Pjacenzian warm period

P\WP)?

* Current CO, data sets are low in resolution to capture the variations in these
intervals and some disagreement between records exist.
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Why Study the mid-
(m

1. The KM5c interval

KM5c is established as a key interval for CO,
reconstructions.

* Similar orbital configuration than today.
* Near modern boundary conditions.

* Range of CO, comparable to today based on existing
proxy evidence.

* |deal period to test the response of the climate
system (e.g. temperature, sea-level) to
elevated/similar levels of CO, from today.
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Why Study the mid-Piacenzian warm period
(MPWP)?

< mPWP (PRISM infenal) =3 ,°
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ODP site 999

- New 611B-derived CO,
reconstructions.

-western Caribbean

- Minor source of CO, to the
atmosphere : + 20 ppm

Study location
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ﬁ 150

100

ATLANTIC

ACO, (CO, ocean - CO, atmosphere) ppm

i
JTHERN oc:;:A’N

Ocean Data View / DIVA
1
(3
o



Input parameters for the 6*B-pH proxy

Material Globigerinoides ruber (sensu stricto) white S1B.. o, (1) oH

pH Calculation. Input parameters: 611B,,=39.61%0 (modern value)
;11 $11
. 5" By omy: |~ 0" Bow
p = pAp g 1B, | 11-10 K p *(SUBB(()H)_ —1000 * ("-10K 5 — 1)
4
Species-specific §''B B(OH),/foram 1110 K,=1.0272 (Klochko et al., 2006)
Function of: relation from calibration by Henehan ISOtOpiC fractionation factor Coz(g)
-Temperature : Mg/Ca derived et al. (2013)

corrected for Mg/Ca of seawater
-Salinity: modern value used

CO, Calculation. Second carbonate parameter used:
Dissolved inorganic carbon (DIC) from Sosdian et al., 2018




CO, cycles during the mPWP
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Eccentricity
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CO, and orbital parameters

Eccentricity
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® KM5c occurs during eccentricity minimum
(similar to modern).
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Precession Index: e(1 +sin(®))

® The tail of the CO, decrease after M2
maximum is:

-out of phase with Northern
summer insolation minima (yellow).

- in phase with Southern summer
insolation minima (black).
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® £\ 4 proxy of water mass change at U1313 (N
Atlantic) is in phase with CO, during M2.

de la Vega et al. (in review), Lang et al., 2016; Laskar et al., 2004



What are the possible causes of M2 glaciation
trigger?



Possible causes of M2 glaciations trigger

Insolation (W/m2)
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What are the possible causes of CO, lag during
the M2 glaciation ?



Possible causes of CO, lag during M2

* Effect of foraminifera preservation? 0w, //WVW
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£ )(\:\7(\/ &

5"%0 LRO4

* Unlikely, preservation is improved during the -
M2 interval (Todd et al., 2020). 0 |

40 =
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* Change in local disequilibrium?
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* Mg/Ca decreases pre M2 maximum at ODP 999.
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* Possibly associated with local upwelling or
temporary connection through the central
American seaway (CAS) bringing carbon-rich
waters to Site 999.
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during M2 at 999 suggesting waters remained o e 200 2250 2300 sas0 2400
oligotrophic.
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de la Vega et al. (in review), De Schepper et al. (2013);
Groeneveld and Tiedemann (2005)



Possible causes of CO, lag during M2

Insolation (W/m2)
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e Control by change in water
masses as indicated by g4
similarly lagging 6120.

e Implied control by southern
hemisphere changes as observed

with the phasing of austral . WW‘—V—W
summer insolation with the tail of 2 79- ENd
CO, decrease (at ~3280 ky). ® %07 U1313 (N Atlantic) 513
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de la Vega et al. (in review), Lang et al., 2016 Laskar et al., 2004



Mid Piacenzian warm period versus Pleistocene.



MPWP vs. the Pleistocene: CO, and 630 response

Mid-Piacenzian
warm period

Pre Mid-Pleistocene
transition

Late Pleistocene
0-250 ky

CO, range during mPWP
similar (yet smaller) than
Pleistocene values
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Larger response of 6180
during the LP relative to
the mPWP
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—> Larger ice sheet
response following
intensification of Northen
hemisphere glaciation
with lower absolute CO,
levels.



May. 1, 2020 418.03 ppm COz ra nge durlng the mP\NP and

May. 1, 2019 414.88 ppm
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part per million (ppm)
’ Ma una Loa Observatory, Hawaii (Scri pps) ;

Prelimi nary data released May 3 2020

September 1958 - September 2019

Atmospheric (02 CO2.earth

September CO; | Year Over Year | Mauna Loa Observatory

0 .
400 400 400/400 400 400 400 400 400 400 400 400 2 9“.@ Upper range of the mPWP= 389 th ppm.

Sept. 2019 408.55 o

Sept. 2018 405.590
Sept 2017 403.2

Maximum CO, =427 ppm (upper
uncertainty).

350 -

At current rate of CO, increase (~ 2.5
ppm/year), the highest level of the mPWP
will be reached in ~2025.
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Conclusion

* CO, during the mPWP ranges between 331 and 389 ppm (~60 ppm), similar
absolute range as the late Pleistocene (~90 ppm) where full bihemispheric G-1G
cycles occur.

* CO, during KM5c is determined for the first time at 37133 ppm, a key value to
enable models to be tested and evaluate the response of the climate system (e.g.
temperature, ice sheet, sea-level) to current CO, values.

* CO, during M2 lags 60 by 10 ky possibly caused by Southern hemisphere
forcing (insolation).

* The response of ice sheet is amplified during the late Pleistocene despite a similar
range of CO,. Lower absolute value (<280 ppm) of CO, are an important aspect to
trigger large ice sheet response due to logarithmic nature of forcing.



