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Ground-coupled heat pump systems are on of the most efficient heating and
cooling means for buildings (Omer, 2008). To reduce their high construction
costs, it is quite common to coupled auxiliary systems with them. The design
through optimization of the resulting hybrid ground-coupled heat pump (Hy-
GCHP) systems is complicated because it involves multiple parameters, some
of which can only be guessed or estimated.

Therefore, professionals face the very real prospect of under or oversizing the
Geothermal Heat Exchanger (GHE) part of the Hy-GCHP system as a result of
these uncertain parameters. This likely leads to (Nguyen et al., 2014):

• Higher upfront costs

• Higher operating costs

• Less energy savings

Traditionally, sensitivity analyses (Pianosi et al., 2016) are used by designers as
a way to evaluate the impacts of uncertainties on their designs and prepare
them against unforeseeable circumstances. This operation of course can only
be done once the sizing is completed. This way of operating however cannot
lead to changes in design to take uncertainties into account once the sizing is
done.

Schematic representation of a hybrid ground-coupled heat pump system where the design
variables considered in this work (H, nb, nHP, LX, LY) are in bold and where the uncertain
parameters are underlined.
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Traditional stochastic methods, like Markov chain Monte Carlo, can handle uncertainties during the sizing, but come at a high computational cost paid for in

millions of simulations.

Alternative stochastic design methodologies are exploited in other fields with great success that do not require nearly as many simulations. This is the case

for the conditional-value-at-risk (CVaR, left) in the financial sector (Rockafellar and Uryasev, 1999),

The NPVaR is assembled using the average of the worst fraction (α) of a NPV distribution
composed of a population of ω samples.

and for the net present value-at-risk (NPVaR, right) in civil engineering (Ye and Tiong, 2000). Both involve distributions of uncertain parameters but only

focus on the tail of distributions. This results in quicker optimizations than considering all possible outcomes but also leads to more conservative designs. This

way, the proposed designs remain profitable even when faced with extremely unfavorable conditions.

Relation between the Value-at-risk (VaR) and the CVaR. The CVaR constitutes the average of the
worst cases that occurred between the VaR and the worst possible outcome.
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Problematic:
As of today, not muck work is published regarding the design by optimization of GCHP systems under uncertainty. Therefore, a methodology is required to
weave directly uncertainties throughout the design phase instead of simply assessing their impacts on the optimum afterward.

Goal of this research:
In that regard, this work proposes the use of the NPVaR, a stochastic financial indicator that focuses on the minimization of loses, by adapting it for the
design by optimization of hybrid GCHP systems. The goal is to put forward a methodology and to showcase how it can lead to the sizing of systems that are
more economically robust when they are under uncertainty.

Outline of presentation:
• First, this presentation goes over the optimization and simulation strategies that are used to model a CGHP system’s operation. It also presents the

elements that are considered by the model during the calculation of the NPVaR.

• Second, all the parameters, values and constants that are needed in the case study are presented.

• Third, the case study’s results are presented. A brief discussion of the results follows.

• Finally, presentation concludes with a summary and outlines the main contributions of this research.
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The developed algorithm uses the NPVaR of the
Hybrid GCHP system as objective function and a
tolerance (Tol) on its variation through iterations as
a stopping criteria in order to size the system.

In PURPLE, a first optimization of the number of
borehole nb is performed. Although nb is an integer
variable, this optimization is relaxed into a
continuous one and relies on a constrained
nonlinear optimization algorithm.

In GREEN, if the outcome of the optimization on nb

is fractional, a branch-and-bound (Lawler and
Wood, 1966) scheme is utilized in order to
constraint future sub-problems of the original one
to converge towards integer solutions.

Simplified flow-chart of the algorithm used to optimize the NPVaR with a breakdown by color of its 

different parts.
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In RED, the other four design variables are optimized. All possible
numbers of heat pump nHP, which is also an integer variable, are
tried out using a sweeping scheme based on the current value of
nb. This proved to be quicker that using branch-and-bound on both
integer variables.

The other three variables, H, Lx and Ly, are subjected to a second
continuous optimization loop that uses the same constrained
nonlinear optimization algorithm.

Eq. 1

Eq. 2

In BLUE, the g-function of the boreholes field tried out by the
two optimization loops are calculated using :

1. an Artificial Neural Network (Dusseault and Pasquier, 2019;
left), if nb ≤ 10, or

2. a Block Matrix Formulation (Dusseault et al., 2018; right)
otherwise.

Artificial neural network used for the approximation of long term g-functions (source: Dusseault and 
Pasquier, 2019). It contains two fully connected hidden layers with 200 neurons each.
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Finally in ORANGE, the objective function of both optimization loops, the
NPVaR, is calculated using the following equations and related costs (in
Table 1). CF(k=0) are the construction costs, CF(k>0) are the revenues
generated by operating the hybrid system instead of an all-electrical
reference system. Operating costs are calculated using local electricity
tariffs.

Eq. 3

Eq. 4

Eq. 5

Eq. 6

Eq. 7

Eq. 8
Where QG (kW) is the total ground thermal load, QMec (kW) is the power consumption 
of the auxiliary systems and mechanical equipment and QB (kW) is the heat demand of 
the building.

Table 1 - All costs (in Canadian currency) that are considered in this
work regarding the construction of an hybrid GCHP system (Hénault
et al., 2016).

Item Variables Values

Borehole drilling ($/m) c1 50

Geothermal vault ($/borehole) c2 1666

Borehole commissioning ($/borehole) c3 200

Heat-carrying fluid ($/L) c4 1.75

Trench, volume ($/m3) c5 60

Trench, width ($/m) c6 2

GHE commissioning ($/borehole) c7 400

Thermal response test ($) c8 10000

Geothermal heat pump ($/kW) c9 733

Additional costs ($/kW) c10 366

Electric heating ($/kW) c11 50

Electric cooling ($/kW) c12 586
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The algorithm that was just presented will now be used to design through optimization two hybrid GCHP systems: one with the NPV as objective function,
and the other using the NPVaR. The goal of this case study is to compare the two resulting designs during a 10 years operation in 1000 random scenarios in
term of return on investment. Each scenario corresponds to a different batch of the four uncertain parameters (heat loads, construction and electricity costs
and soil thermal conductivity).

The building’s heat demand is represented by the synthetic load showed below which corresponds to a five-storey long-term care center (each storey of 2322
m2) . This building was modelled in the Simeb (Millette et al., 2011) software under typical climate and construction conditions for the city of Montreal,
Canada.

• Peak loads of 534.6 kW in heating and 368.8 kW in cooling.
• 7.826 GWh of energy in heating and 2.996 GWh of energy in cooling annually.
• Sharp peak loads, both in heating and cooling.

The modelled building’s hourly heat demands for a typical year of operation that begins January 1st.. Negative values are for heating
and positive ones are for cooling.



Probability density functions of the four uncertain parameters. The PDFs express, apart from the monthly electricity 
cost, the probability that the corresponding base case scenario values are multiplied by a random constant.
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The heat-pumps behave according to the following graphic (left) in
terms of coefficient of performance (COP) and capacity (CAP) with
regard to their entering water temperature (EWT).

The four uncertain parameters (construction costs,
increases of electricity costs, soil thermal conductivity
and heat demand) have the following probability
density functions (right).

Coefficients of performance (COP) and capacities (CAP) of individual GCHP used in all simulations.
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Here is a side by side comparison of the 1000 operation scenarios of both systems in post-design, field conditions. All the returns on investment that are
shown, the differential NPVs, are presented with respect to a reference solution that uses all-electrical heating and cooling systems.

• The blue histogram is much wider. It is also centered left with regard to the return on investment that was forecasted during the design phase (the 
dashed vertical black line).

• The blue histogram’s tail of distributions, that contains the worst returns, is also longer, stretching all the way into financial losses territory.

Sized using NPV Sized using NPVaR

Optimized NPV (k$) 150.8 89.3

nb (-) 16 9

nHP (-) 10 6

H (m) 150 150

LX (m) 8.83 7.28

LY (m) 5.27 4.73

Optimization time (hours) 3.8 48.2

Table 2 - Proposed designs and computational times for the optimizations that used 
the NPV and NPVaR as objective function.

These histograms were assembled using 1000 NPVs each that correspond to 10 years of operating each Hybrid
GCHP systems. They were calculated using the NPV based design (blue), and the NPVaR based design (red) using
α = 0.1 and ω = 100.
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• In the upper quartile, the NPV based design is worth 25 k$ more on average than the NPVaR based design. This amounts to 15.72 % superior gains.
• This difference drops to 11.03 % in the second quartile and even further in the third quartile to 5.53 %.
• The profitability of both systems finally inverts in the bottom quartile in favor of the NPVaR to 9.22 %. Therefore, the differences in net present values

across the 1000 scenarios show that the NPVaR outperforms the NPV under the most unfavorable circumstances.

• The average NPVaR system’s worth is two and a half times that of the NPV when looking at the bottom 10 cases.
• Considering only the worst case, the NPVaR transforms major losses into similar gains. This results in the sizing by NPVaR never losing money even in the

harshest of circumstances.

This figures shows the cumulative distribution functions of net present values of both systems across the 1000 random scenarios. It was constructed
using both histograms introduced earlier.
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1. We demonstrated how a stochastic financial indicator called the net present value-at-risk (NPVaR), when used as an objective function, can help
offset the consequences of uncertainties associated with the design of hybrid GCHP systems. This is better than traditional methods which only aim
to quantify the impacts of uncertainties using sensitivity analyses after the sizing is completed.

2. This methodology is implemented in design phase as part of the optimization process. The benefits of this methodology are brought to light in a
case study that compares two designs : one proposed using the NPVaR and the other sized with the more traditional net present value (NPV).

3. In this case study, four parameters and factors are represented as statistical distributions instead of fixed values: the construction costs, the
building’s heat loads, the electricity costs and the soil thermal conductivity.

4. Our results indicate that the NPVaR yields better returns on investments when considering conditions less beneficial to geothermal energies.
Moreover, it greatly shields against unpredictable financial losses when looking at the worst possible construction and operational conditions.

5. This methodology for design is radically different than existing methods who rely on non stochastic algorithms and then rely on sensitivity analysis
in hindsight to assess the robustness of their sizing.
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