
The IAEA carbonate reference materials aimed at the VPDB scale realization with low uncertainty

<u>Sergey Assonov</u>, Ales Fajgelj, and Manfred Gröning IAEA, Terrestrial Environment Laboratory, Vienna, Austria (<u>s.assonov@iaea.org</u>) Online display for EGU-2020, session BG2.5, Chat on Wed, 06 May, 16:15–18:00

IAEA - custodian of primary Reference Materials (RMs):

- <u>Primary standards (artefacts)</u> are used to establish the <u>entire</u> <u>calibration schemes for stable isotopes</u>, similar to prototypes of *kilogram* and *meter*. Example: VSMOW & SLAP.
- Realizations of these standards <u>highest-level RMs (so-called</u> <u>primary RMs)</u> are distributed by the IAEA.
- When exhausted, primary RMs need to be replaced. Still, primary RMs have the lowest possible uncertainty.
 Examples: VSMOW => VSMOW2, NBS19 => IAEA-603.
- Secondary RMs are characterised <u>directly against</u> primary RMs.

History of the highest RMs for δ^{13} C:

carbonates, CO₂ extraction by reaction with H₃PO₄

1953: Belebmite from PeDee formation, CaCO₃-matrix. (its homogeneity cannot be taken for granted.)

From: https://en.wikipedia.org/wiki/Belemnitida

1957: NBS20, Solnhofen limestone, CaCO₃matrix. Later, drifts in δ^{18} O and potential contaminations were reported.

1987: NBS19, homogeneous marble of unknown origin, CaCO₃-matrix.

2006: LSVEC (Li_2CO_3 chemical) introduced as the second-scale anchor.

2009: NBS19 exhausted. Preparation of its replacement started.

2015: large drift of LSCEV δ^{13} C value was reported, later its use as δ^{13} C-RM discontinued.

There were urgent needs for NBS19' replacement and LSVEC' replacement.

Why we need low uncertainty for high-level RMs: Compatibility targets for stable isotope data of greenhouse gases

Component	Component Compatibility targets, including long-term compatibility, 1-sigma					
CO ₂	± 0.1 ppm (North.Hem.) ± 0.05 ppm (So.Hemisph)					
CH₄	± 2 ppb					
СО	± 2 ppb	E.				
N ₂ O	± 0.1 ppb	MATE				
SF ₆	± 0.02 ppt	Ĩ				
H ₂	± 2 ppb	MI				
$\delta^{\bar{I}3}C$ - CO_2	± 0.01‰	VEATHER CLIMATE WATER				
δ ¹⁸ 0-CO ₂	± 0.05‰	M				
δ ¹³ C-CH ₄ δ D-CH ₄	± 0.02‰					
SD-CH	$\pm 1\%$					
0 D-CH4	± 1900					

18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015)

(La Jolla, CA, USA, 13-17 September 2015)

Compatibility targets are based on the intended data use. Targets for $\delta^{13}C$ are very strict.

The long-term compatibility can be achieved by using reliable δ^{13} C-RMs with low uncertainty.

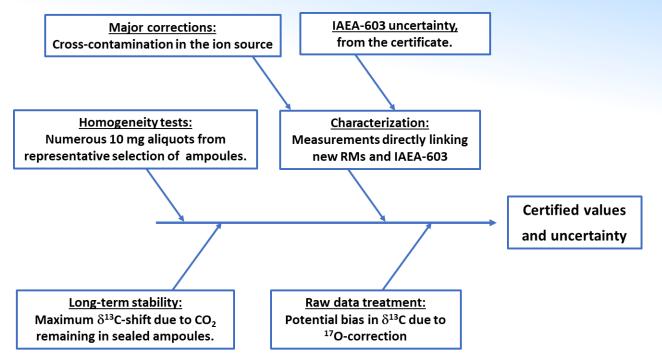
2016: release of IAEA-603, replacement for NBS19

Done

IAEA-603, Carrara marble CaCO₃.

Batch production, well-characterized uncertainty, storage effects eliminated by material sealing in glass ampules. IAEA-603 addresses the ISO Guide 35 requirements for RMs and also WMO requirements for greenhouse gas observations.

 $\delta^{13}C = +2.460 \pm 0.010 \% (k=1)$ $\delta^{18}O = -2.730 \pm 0.040 \% (k=1)$


2018-2020: preparing new carbonate RMs covering δ^{13} C range:

Preparing new RMs for δ^{13} C Matrix - chemical CaCO₃ Batch production (>3000 units of each RM), storage effects eliminated by sealing in glass ampules.

Uncertainty components associated with the values of new RMs:

Results of homogeneity tests and stability estimations:

New RMs	δ ¹³ C, ‰	Uncertainty due to homogeneity, ‰ 1-sigma	Max δ ¹³ C-shift due to CO₂ in ampoules	δ ¹⁸ Ο, ‰	Uncertainty due to homogeneity, ‰ 1-sigma
IAEA-610	~ -9.1	0.006	~0.005	~ -18.8	0.040
IAEA-611	~ -30.8	0.006	~0.001	~ 4.2	0.043
IAEA-612	~ -36.7	0.006	~0.002	~ -12.1	0.058

Preliminary estimates of combined uncertainty (k=1) for new RMs and comparison with old RMs:

The combined uncertainty estimated for new RMs (these are marked in red) includes the uncertainty components related to the material homogeneity, stability, mass-spectrometer' linearity and cross-contamination.

Old RMs were not assessed for the homogeneity and stability.

Summary: strategy for δ^{13} C-RMs at the IAEA:

1. Primary RM, carbonate IAEA-603

2. New carbonate RMs covering range of δ^{13} C values, IAEA-610, IAEA-611, IAEA-612

Nearly done, RM's values are under review. Expected release in 2020.

3. Re-assessment of other secondary RMs (of combustible matrix) for the value consistency.

Thank you for your attention!