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Introduction

• Clay mineral precipitation plays a crucial role in controlling chemistry of Earth’s surface and shallow 
subsurface waters [1,2]

• Clays can provide nutrients [1]

• The sluggish precipitation of clays could hinder weathering [3]

• Adsorption of e.g. heavy metals on clay, could play a crucial role in the transport of these material through the 
environment [4]

• Despite the importance of clay mineral dissolution and precipitation in natural environments, there are little 
constrains on the precipitation and dissolution rates of clays

• Clay mineral dissolution and precipitation rates are thought to depend on the reaction affinity, and thus on 
the saturation state of the system [5]

• Dissolution rate studies so far have only considered far from equilibrium conditions, while natural systems are often close 
to equilibrium [6]

• To gain a further understanding of clay mineral dissolution and precipitation mechanisms and rates and to 
gain a further understanding on the dependency of clay precipitation/dissolution rates on reaction affinity, we 
studied sepiolite dissolution and precipitation rates as a function of solution saturation

• Sepiolite is a Mg-rich clay (Mg₄Si₆O₁₅(OH)₂·6H₂O), which although it is are, is thought to one of the few authigenic clays to 
precipitate readily at room temperature

Si tetrahedral sheet

Mg octahedral sheet

Schematic of sepiolite
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Methods

• Sepiolite seeded flow through experiments, crystalline sepiolite contained in dialysis tube
• Inlet solution for precipitation experiment, sepiolite saturation index is 18 (pH = 9.21) at 60  ͦC
• Dissolution experiments, at pH 8 and at 60  Cͦ

• Vary flow rates to change the saturation state in the reactor

• Reactor placed in shaker bath to facilitate constant mixing and maintain a constant temperature
• Bubble inlet solution with N2 gas to prevent CO2 dissolution

• Measure inlet and outlet Mg/Si concentrations, calculate rate from difference

• 1 experiment ran for three months, to confirm the precipitation of crystalline sepiolite
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Results
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Temporal evolution of aqueous Mg/Si concentration of sepiolite precipitation experiments

• Temporal evolution of the sepiolite precipitation experiments indicate a significant decrease in the Mg and 
Si concentration over time.

• Results indicate a stoichiometric decrease of Mg/Si

Temporal evolution of the aqueous concentrations sepiolite dissolution experiment shows the reverse trend
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Results from the long-term precipitation experiments show no notable difference between the seed 
material and the precipitated material, indicating the growth of crystalline sepiolite directly from 
solution

• Of the collected material approximately 30wt.% is newly precipitated material. Hence, if the 
precipitated material would be structurally different from the seed material, this would be visible in X-
ray Diffraction (XRD) analysis and scanning electron microscopy (SEM) imaging

• XRD spectra indicate that the precipitated material is pure sepiolite

• SEM images indicate no morphological difference between the seed material and the precipitate
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Discussion

• Reaction rates decrease as the reaction affinity 

decreases

• At far from equilibrium conditions, the 

dependency between affinity and reaction rate is 

linear and thus follows transition state theory

• At near-equilibrium conditions, this dependency 

becomes non-linear

• Non-linearity has previously been 

associated with a decrease in the 

availability of active surface sites [7]

• Non-linearity might be related to the 

relative difficulty of the system to 

overcome the nucleation barrier, as the 

solution approaches equilibrium
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Conclusion

• Sepiolite dissolution follows transition state theory at 
far from equilibrium conditions

• However, at near equilibrium condition the 
dependency between reaction rates and reaction 
affinity becomes non-linear, suggesting a limitation in 
the number of active surface sites

• The effect of changes in the saturation state on the 
precipitation/dissolution rates are significant and 
could (partially) account for differences between 
measured mineral dissolution/precipitation rates and 
rates measured in the field 
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