

Event runoff calibration with LISEM in a recently burned Mediterranean forest catchment

Vieira D.C.S.,

dianac.s.vieira@ua.pt @dicasivi

Basso M., Nunes J.P., Keizer J.J., Baartman, J.E.M.

Introduction

The size of the **post- fire increases** in hydrological response can be up to **several orders of magnitude** of difference, with increases in total flow being often considerably less than those in peak discharge.

Research question & approach

Objective

Improve the understanding of the hydrological response of recently burnt catchments and the role of soil water repellency (SWR).

- 1. Can OpenLISEM simulate the quickflow of events with contrasting initial soil moisture content (SMC), presumed SWR conditions?
- 2. Can OpenLISEM be optimized by adjusting infiltration capacity as a simple function of initial SMC?
- 3. How do runoff predictions fit with field observations?

Climate

- humid meso-thermal
- mean temperature 12°
- mean rainfall 1133 mm

Study site

Overall

- catchment of 10 ha;
- maritime pine stands and eucalypt forest plantations;
- distinct land operations;
- low-to-moderate burn severity

Monitoring

- hydraulic channel at the outlet;
- discharge measured w/ ultrasonic sensor (5 min);

Eucalypt and shrubs

Pine and shrubs

• SMC registered continuously (sm1, sm2, outlet);

roads

streams

415

• monthly SWR measurement

Contour plowing

Terraces

Downslope plowing

Event selection & data

Selection

• 16 events

Classification

Mean catchment theta_i dry < 17% vol. < wet

- 7 events dry
- 9 events wet

Data

Baseflow separation, since OpenLISEM does not simulate baseflow.

Results - Event classification

 (\mathbf{i})

CC

wet

Results – Model performance (manual cal.)

Ð

BY

Efficiency	Indicos	Total discharge	Dook discharge	Time peak	
assessment	maices	iotal discharge	Peak discharge		
Overall	NSE	0.95	0.68	1.00	
	R2	0.97	0.88	1.00	
	PBIAS	-10.01	7.14	0.66	
Dry	NSE	0.71	0.58	1.00	
	R2	0.87	0.72	1.00	
	PBIAS	-10.85	-10.76	1.58	
Wet	NSE	0.94	0.54	1.00	
	R2	0.99	0.96	1.00	
	PBIAS	-9.76	19.22	-0.50	

Results – Parameterization sets

A statistical parameterization set was built relating manual calibration with:

- antecedent precipitation index (API, -)
- baseflow (L s⁻¹) event duration (min)
- initial soil moisture content (theta_i, cm³ cm⁻³)

- maximum rainfall intensity (Imax, mm s⁻¹)
- total rain (mm)

Calibration procedure		Adjusted R- squared	p-value	OpenLISEM performance predicting total discharge		
				NSE	R ²	PBIAS
overall	all = 0.084 + 0.0004 duration + 0.0026 rain + 2.1419 theta _i	0.77	<0.0001	0.58	0.67	11.60
combined	wet = 0.3344 + 0.0003 duration + 0.0026 rain + 1.1691 theta _i	0.97	<0.001	0.96	0.87	-6.40
	dry = -0.5687 - 0.0863 baseflow + 0.0015 duration + 0.0053 Imax - 0.024 rain + 7.5182 theta _i	0.95	<0.5	0.80		
manual calibration		-	-	0.95	0.68	-10.01

Results – Model simulations

Outlet

 Model simulations agree with quickflow measurements

Spatial predictions

Low agreement
between
simulations and
runoff plots

Discussion

Fragilities

- Model calibration for two distinct initial soil moisture conditions:
 - \circ Wet or dry classification

 \rightarrow inconsistencies with field data

 \circ $\,$ SMC is the main predictor of SWR $\,$

 \rightarrow other variables affect model calibration (rainfall

amounts and storm duration)

• Spatial predictions have a poor agreement with field runoff measurements

Strengths

- Model calibration approach:
 - OpenLISEM can be calibrated by limiting water storage capacity of soil
 - Statistical models can provide alternative inputs sets

Conclusion

This modelling exercise revealed that OpenLISEM has a **strong potential** to simulate postfire hydrological response, especially if SWR component can be considered in the simulations, and if more detailed information is provided to the model, namely high resolution of **SWR measurements** and **spatially distributed SMC**.

I would like to ask you to comment |share| participate in #ShareEGU20

Click the logos to find out more about our work:

Institutional profile Cesam universidade de aveiro centro de estudos do ambiente e do mar Social media Email

(CC

Cofinanciado por:

Acknowledgements

dianac.s.vieira@ua.pt

UNIÃO EUROPEIA Fundo Europeu de Desenvolvimento Regional