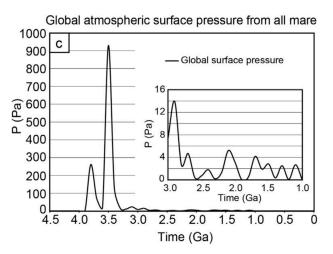


National Aeronautics and Space Administration Goddard Institute for Space Studies New York, N.Y.

NEQSS


Secondary Volcanically-Induced Lunar Atmosphere and Lunar Volatiles: 3-D modeling and Analysis

I. Aleinov (Columbia U.), M. J. Way (NASA GISS), K. Tsigaridis (Columbia U.), E. T. Wolf (U. of Colorado), C. Harman (Columbia U.), G. Gronoff (NASA LaRC), C. Hamilton (U. of Arizona)

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Motivation

- Needham & Kring, 2017 : ~3.5 Gya Moon could have a transient collisional atmosphere up to 10 mb due to volcanic outgassing from the maria
- Wilson, Head & Deutsch, 2019: the thickness of such an atmosphere would depend on intervals between the eruptions, and may not exceed a microbar scale
- Such an Atmosphere would determine transport and deposition of volatiles

Methods

- ROCKE-3D planetary General Circulation Model (GCM) (Way et al. 2017)
 - <u>https://simplex.giss.nasa.gov/gcm/ROCKE-3D</u>
- 1-D chemistry model determines composition of atmosphere

Atmospheric composition depends on:

Volcanic outgassing (Needham & Kring, 2017)

- CO can convert to CO₂ in H₂O presence
- H₂O can escape or condense¹
 - can easily escape²

 H_2

S

- condenses quickly at the surface²

Atmospheric chemistry

 $CO \leftarrow \rightarrow CO_2$ (for T > 175 K : CO_2 – dominated)¹

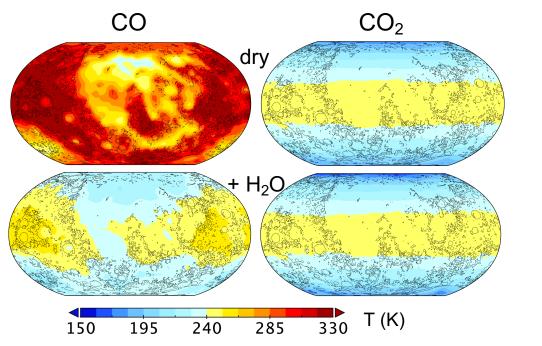
Atmospheric escape

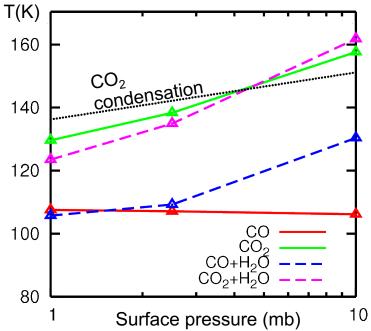
Less than 30 kg/s for most species (see Aleinov et al., 2019 for details)

¹green – greenhouse gas ²gray – not included in current research

(80-750 ppm) (1.8-9 ppm) (0.007-45 ppm) (180-540 ppm)

Experiments

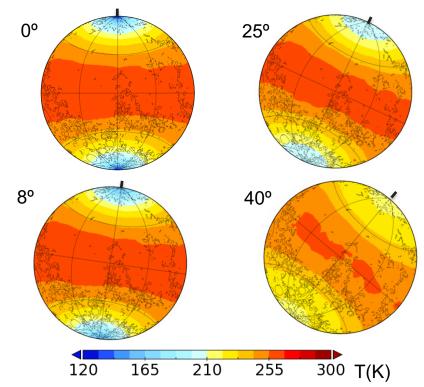

- Atmospheric pressure: 10 mb, 2.5 mb and 1 mb
- Atmospheric composition:
 - Main components: 100% CO or 100% CO₂
 - \circ Presence of water: dry or 0.005 kg/kg H₂O
- Obliquity with respect to Sun: 0°, 8°, 25°, 40°
- Rotation period: 17.8 days (45 Earth radii orbit)
- Solar radiation: solar constant: 0.75 of modern value, spectrum: 2.9 Gya
- Current observed topography, albedo & distribution of PSRs (assume lunar topographic features unchanged last 3.5 Gy)


Temperature dependence on composition and mass

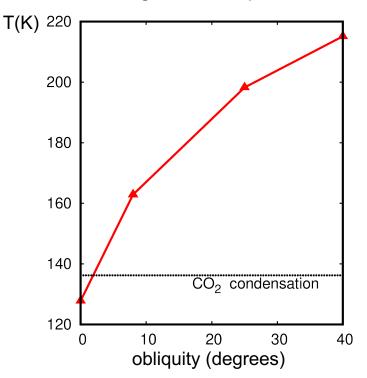
0-obliquity *Preliminary results in Aleinov et al. (2019) GRL, 46, 5107.*

Lower (2% mass) atmospheric temperature for 1 mb atmosphere (dry CO atmosphere is much warmer due to lack of radiative cooling)

Ground temperature at the poles (CO2 can condense for lower surface pressures)



Obliquity dependence


Atmosphere: 1 mb CO₂

Can non-zero obliquity prevent CO2 condensation at poles? - Yes!

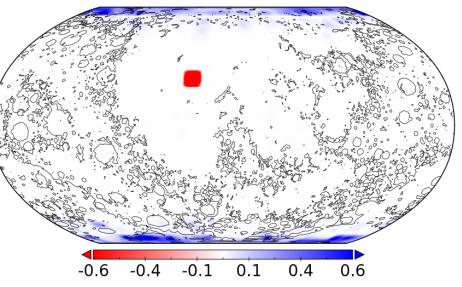
Ground temperature (annual average)

Polar ground temperature

H₂O transport from a major eruption

Atmosphere: 1 mb CO2 (in equilibrium)

A <u>major eruption</u> in Mare Imbrium was simulated with typical parameters from Wilson & Head (2018):


 H_2O outgassing rate = 3 • 10⁴ kg/s (assuming 10⁴ m³/s magma flow and 1000 ppmw H_2O in lava)

Duration = 100 days

Outgassing region = 250×250 km

In 3 years 79% of outgassed H₂O was deposited in polar regions (above 68° North or below 68° South)

H₂O deposit after 3 years (kg/m²)

Conclusions

- Atmospheric thickness determined by competition of outgassing and escape
- Composition defined by chemistry: depends on temperature and H₂O availability
- Thin (<2.5 mb) CO₂ atmosphere is less stable and is prone to collapse
- Non-zero obliquity may help with stability
- 1mb CO₂ atmosphere can effectively transport volatiles, delivering ~80% of outgassed amount from a singe major eruption to the poles in ~3 years

Acknowledgements

This research was supported by NASA Nexus for Exoplanet System Science Computing resources were provided by NASA Center for Climate Simulation

References

- Aleinov I. et al. (2019) GRL, 46, 5107–5116.
- Needham D. H. and Kring D. A. (2017) Earth and Planetary Sci. Lett., 478, 175-178.
- Way M. J. et al. (2017) ApJS, 231, 12.
- Wilson L. et al. (2019) LPSC 50, Abstract 1343.
- Wilson L. and Head J. W. (2018) GRL, 45, 5852-5859.