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● Needham & Kring, 2017 : ~3.5 Gya Moon could 
have a transient collisional atmosphere up to 10 
mb due to volcanic outgassing from the maria

● Wilson, Head & Deutsch, 2019: the thickness of 
such an atmosphere would depend on intervals 
between the eruptions, and may not exceed a 
microbar scale

Motivation

● Such an Atmosphere would determine transport and deposition of volatiles

Methods
● ROCKE-3D - planetary General Circulation Model (GCM) (Way et al. 2017) 

○ https://simplex.giss.nasa.gov/gcm/ROCKE-3D
● 1-D chemistry model determines composition of atmosphere

https://simplex.giss.nasa.gov/gcm/ROCKE-3D


Atmospheric composition depends on:

1green – greenhouse gas 

CO - can convert to CO2 in H2O presence (80-750 ppm)
H2O - can escape or condense1 (1.8-9 ppm)
H2 - can easily escape2 (0.007-45 ppm)
S - condenses quickly at the surface2 (180-540 ppm)

Volcanic outgassing (Needham & Kring, 2017) 

Atmospheric chemistry
CO ←→ CO2 (for T > 175 K : CO2 – dominated)1

2gray – not included in current research

Atmospheric escape

Less than 30 kg/s for most species (see Aleinov et al., 2019 for details)



Experiments

● Atmospheric pressure: 10 mb, 2.5 mb and 1 mb
● Atmospheric composition:

○ Main components: 100% CO or 100% CO2

○ Presence of water: dry or 0.005 kg/kg H2O
● Obliquity with respect to Sun: 0º, 8º, 25º, 40º
● Rotation period: 17.8 days (45 Earth radii orbit)
● Solar radiation: solar constant: 0.75 of modern value, spectrum: 2.9 Gya
● Current observed topography, albedo & distribution of PSRs  

(assume lunar topographic features unchanged last 3.5 Gy)



Temperature dependence on composition and mass
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Preliminary results in Aleinov et al. (2019) GRL, 46, 5107.
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Obliquity dependence
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H2O transport from a major eruption
In 3 years 79% of outgassed H2O
was deposited in polar regions 

(above 68o North or below 68o South)

Atmosphere: 1 mb CO2
(in equilibrium)

H2O deposit after 3 years (kg/m2)A major eruption in Mare Imbrium
was simulated with typical parameters
from Wilson & Head (2018):

H2O outgassing rate = 3 • 104 kg/s
(assuming 104 m3/s magma flow 
and 1000 ppmw H2O in lava)

Duration = 100 days

Outgassing region = 250 ✕ 250 km



Conclusions

● Atmospheric thickness determined by competition of outgassing and escape
● Composition defined by chemistry: depends on temperature and H2O availability
● Thin (<2.5 mb) CO2 atmosphere is less stable and is prone to collapse
● Non-zero obliquity may help with stability
● 1mb CO2 atmosphere can effectively transport volatiles, delivering ~80% of 

outgassed amount from a singe major eruption to the poles in ~3 years
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