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Science Questions

One objective of Parker Solar Probe:
“Trace the flow of energy that heats and
accelerates the solar corona and solar wind”

What role does turbulence play?

— What is turbulence energy flux near the
Sun, is it sufficient to accelerate the wind?

— How does turbulence heat the solar corona
and inner heliosphere?

— How is inward turbulence component
generated to enable the cascade?

— What is turbulence like closer to the Sun?
How does it evolution with distance?

— What does this tell us about the
fundamental nature of MHD turbulence?



Data Overview

e Time series of data from first two orbits of PSP
e Split into 1-day intervals and calculate turbulence properties
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Magnetic Spectrum

Magnetic spectra are power law (inertial range), with low frequency flattening
Power increases towards Sun (~103 times)
Shallower inertial range spectrum closer in, from -5/3 to -3/2

These are the two main predictions from MHD turbulence models
-5/3 from critical balance model (Goldreich & Sridhar 1995)
-3/2 from scale-dependent alignment (Boldyrev 2006)

% T _1 T T T § _14
inertial 3 0.9
- ES range 08
== ] ’ T T I B B .
J 0.7 -3/2 Y
0.6 -
g6+
=)
0558
~
0.4
A7 ¢
0.3
0.2
18 : — —
10° 10
1 0.1 r (au)
1 1 I | 0
107 107 1073 1072 107 10° 4

fse (Hz)



Spectra of MHD Variables at 0.17 au

Highly imbalanced (E,>>E.),
with small amount of residual
energy (Ep>~E,)

All spectra have -3/2 inertial
range (until noise level)

Matches turbulence models with

scale-dependent alignment
(Boldyrev 2006, Perez & Boldyrev 2009,
Chandran et al. 2015, Mallet &
Schekochihin 2017)

Elsasser spectra scale the
same, rules out other classes of
imbalanced turbulence models

Similar to imbalanced
turbulence at 1 AU




Spectral Index & Cross-Helicity

Is radial trend in magnetic spectrum index due to to cross-helicity?
Oc evolves radially, consistent with 1 au data showing index depends on o,
Other possible interpretations for -3/2 at perihelion:
— Transitory evolution towards -5/3 spectrum (but many nonlinear times)
— Transition from k-7 spectrum of reflection driven cascade (Velli et al. 1989)7
— Closer to Sun turbulence is in forced rather than decaying state
— Effects of driving sources from Sun are affecting inertial range
Want to see how trends continue as we get in closer to distinguish these
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Magnetic Compressibility & Slow Modes
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— Is proportional to B as expected
— decreasing slow mode KE fraction € at smaller r

Slow mode generation with r? PDI?
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Turbulence Outer Scale

Break to 1/f range found from
structure functions

Correlation time determined as
when C=1/e

QOuter scale is larger at larger
distances

Use to test different 1/f models

(Matthaeus & Goldstein 1986, Velli et al.
1989, Verdini et al. 2012, Perez &
Chandran 2013, Chandran 2018, Matteini
et al. 2018)

“Classic” interpretation of break
IS the largest scale at which
eddies have had time to decay
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Turbulence Outer Scale

Approximately linear with r
(with scatter) - same as ion
break scale (Duan et al. 2020)

1/f break scale and correlation
scale behave similarly

Better correlation as k vs T

Good correlation between
outer scale nonlinear time and
travel time

But T << T, 1/f range has time
for nonlinear processing

As for recent ideas for 1/f

range (Velli et al. 1989, Verdini et al.
2012, Perez & Chandran 2013,
Chandran 2018, Matteini et al. 2018)
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Waves/Turbulence Driven Solar Wind

Energy in waves/turbulence:
— Dissipates to heat corona
— Fluctuation pressure accelerates solar wind
— Rest becomes solar wind turbulence

Non-linear simulations suggest ~1/3 energy to
each (Perez & Chandran 2013 ApJ)

Advanced wave-driven models can produce
realistic fast solar wind

— Chandran et al. 2011: two-species, ion
anisotropy, collisional/collisionless heat flux,
reflection-driven turbulence

Parker wind Wave/turbulence flux
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Turbulence Energy Flux

Ratio of wave/turbulence to bulk
kinetic flux

ozt |? 3
FAW:p‘ Z ‘ (’UA+§'UR)
1
Fkinetlc - 50’0%

Increases to significant levels
— ~ 10% at perihelion
— ~ 40% extrapolated to rp

— consistent with a turbulence-

driven solar wind

Coronal hole wind in E1 marked
with X, mostly fits models, apart
from periods of radial quiet wind
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Origin of Inward Component

Sun produces outward Alfvén waves but
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sSummary

Turbulence different in some ways at 0.17 au
— Power levels much higher
— B spectral index -3/2 to match all fields
— Lower compressibility (less slow modes)
— Smaller outer scale, nonlinear processing of 1/f range

Role of turbulence in solar wind generation
— Turbulence energy flux fraction increases (to ~10% of sw energy flux)
— Consistent with turbulence-driven solar wind models
— Inward component consistent with reflection generation

Open questions & future work
— What happens to the spectrum closer in”? Driving”?
— Origin of compressive fluctuations and 1/f range
— Energy fluxes within corona vs turbulence-driven models
— Kinetic range turbulence and heating mechanisms

13



