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1. The CASCADE project

• A contribution to the CASCADE (Combining earth observation with a large scale model cascade for
assessing flood hazard at high spatial resolution) project.

• The main working hypothesis of the CASCADE project: the joint use of Satellite Earth Observation
(SEO) – derived soil moisture and flood maps will allow constraining model predictions, with a
reduced need of in situ hydrometric data.

• Objective of the CASCADE project: the production of flood hazard maps over two to three test areas.
This will contribute in establishing SEO-based early warning systems at a large scale by combining
remote sensing and hydraulic modelling through data assimilation.

• Our objective: the development of modelling framework for large scale hazard mapping using a
hydraulic model. The modelling suite SW2D (Shallow Water 2 Dimensions) under constant
development at HydroSciences Montpellier since 2002 will be used with the Depth-Dependant
Porosity (DDP).
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2. Context and challenges
• A flood is a multi-scale phenomena: it occurs on a large scale. However, small scale features affect

flood propagation. They thus need to be well represented in the model.

• Accurate results in conventional Shallow Water models require a fine meshing for representing
complex topographic variations, which implies expensive computational costs.

• Porosity-based models solve the upscaled Shallow Water Equations with integrated porosity. The
sub-grid features are dealt with even when using coarse meshing. This allows saving enormous
processing times.
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3. Research question
• Porosity = fraction of the cell (or edge) available to the water flow. It is equal to

unity when the cell is completely wet, at its highest ground elevation.

• We distinguish storage porosity (ɸΩ) inside the cell from connective porosity (ɸГ) on
cell edges.

• Research question: How can porosity be represented through a grid cell in SW2D-
DDP model?
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4. Study site and available data
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• Area covering approximately 50*30 km2

of the Severn and Avon catchments.

• Two main rivers and six main 
tributaries. 

• Regularly experiences severe flooding 
and for which a comprehensive history 
of information is already available.

• Flood event of July 2007 used as a test 
case.

• An aerial photography close to the peak 
time is available.

• A LiDAR Digital Terrain Model (DTM) is 
available.

• Gauging stations represented by stars.



5. Model setup
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• Upstream boundary conditions: two hydrograms at Bewdley and Evesham.
• Downstream boundary condition: a limnigram at Haw Bridge.
• Initial condition: constant water level over the entire domain.
• A uniform friction coefficient is set to Ks=50s/m1/3 as a first estimation.
• Two configurations of uniform porosity are tested where:

• Configuration a: Φ=0.3 => river width represents 1/3 of cell width.
• Configuration b: Φ=0.6 => river width represents 2/3 of cell width.



6a. Water level assessment

Saxons Lode Bredon Deerhurst

RMSE (a) 0.854 0.886 0.261

RMSE (b) 0.987 0.824 0.419

Global porosities:

Configuration (a): Φ=0.3
Configuration (b): Φ=0.6

Comparison of water levels in the downstream part of the river to assess the hydraulic model performance while changing the global porosities in 
two configuration tests, using the Root Mean Square Error (RMSE) metric. 

• Porosity change is influential on the model performance.

• Results are slightly better in configuration (a) for Saxons Lode and in
configuration (b) for Bredon => parameters other than porosity affect the
model’s behaviour.

• The model is globally less sensitive to porosity at the downstream
(Deerhurst). However the porosity change induces a bigger increase gap of
16%. This is probably due to the backwater effects.

+13 % -6 % +16 %
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6b. Flood extent maps assessment

Contingency map for configuration a
(with Φ = 0.6).

Contingency map for 
configuration b (with Φ = 0.6).

Accuracy = 
0.878

Accuracy = 
0.883

A pixel to pixel comparison of flood extent maps derived from the aerial
photography (observation) and the simulation (while changing the global porosities
in two configuration tests). Evaluation using the overall accuracy metric.

1 1

2

2

3
3

Contingency map Predicted as flooded Predicted as non-
flooded

Observed as flooded Correct prediction: true 
positives (blue)

Underprediction (yellow)

Observed non-flooded Overprediction (red) Correct prediction: true
negatives

• Good results in both configurations (high accuracy).
• Increasing porosity implies the river is wider and the

required overbank flow is higher, which explains:
• How increasing porosity leads to an increase in

underprediction at the Teme-Severn confluence (2)
and the upstream part of the Avon (3).

• How Increasing porosity reduces overprediction in the
upstream part of the Severn (1).

• Using spatially parameterized porosity with respect to river
widths, instead of a globally uniform porosity, is very likely to
improve predictions.

Porosity

Prediction underprediction
overprediction
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7. Conclusion
• Flood extent maps derived from water depth maps generated by the model,

have shown a rather good agreement with the aerial photography-extracted
flood map.

• At certain locations the porosity parameter can be more influential on the
model’s behaviour. Observing underestimations and overestimations at
certain locations suggests the porosity influence on the model is affected by
the space parameter and boundary conditions => Porosity should be
parameterized spatially in order to improve predictions.

• A correction algorithm of local porosity parameterization is to be further
tested.

• In order to further investigate the parameters influence on the model, it
would be interesting to also estimate model uncertainties coming from
boundary conditions and friction coefficient => equifinality problem.

• Overall, the study shows the use of SW2D-DDP holds promising results with
rather satisfying performance levels at a lower computational effort.
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Friction 
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Model 
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Thank you for your attention

Questions?

vita.ayoub@list.lu
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