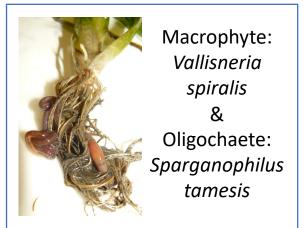
Macrofauna and roots reduce CH₄ production and attenuate nutrient recycling in organic-rich fluvial sediments

Benelli Sara^{1*}, Bartoli Marco^{1&2}

¹University of Parma, Italy ²University of Klaipeda, Lithuania

* e-mail: sara.benelli@unipr.it


In freshwater ecosystems sediment-water fluxes of chemically reduced gas, as methane, and nutrients increase with organic enrichment, through an array of different mechanisms, which can depend upon <u>benthic biodiversity</u>.

Rooted macrophytes and burrowing macrofauna can act as *ecosystem engineers* and alter sedimentary processes and benthic-pelagic coupling via:

- radial O₂ loss (rooted macrophytes)
- particle reworking and burrow ventilation (macrofauna)

Aim

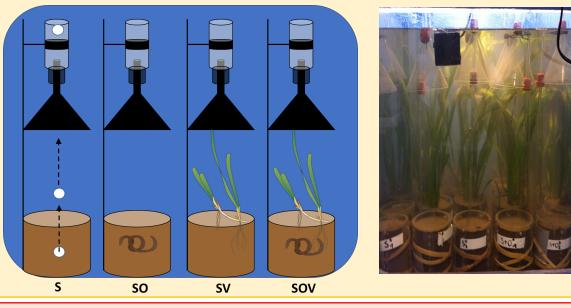
Evaluate emerging properties from the interaction among macrophytes, macrofauna and microbial communities in organic-rich fluvial sediments

Working Hypotheses

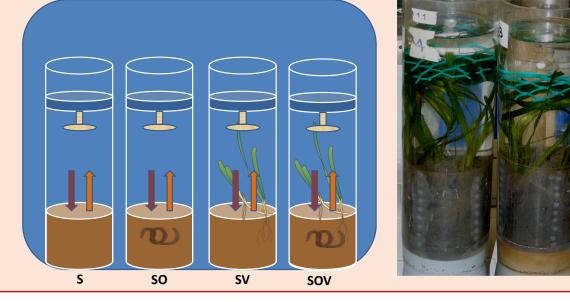
- The combined action of macrophyte roots and burrowers may stimulate denitrification and depress methane emissions
- Tight coupling between macrofauna-mediated nutrient release and plant uptake may result in benthic retention of N and P

Material & Methods

Experimental conditions:

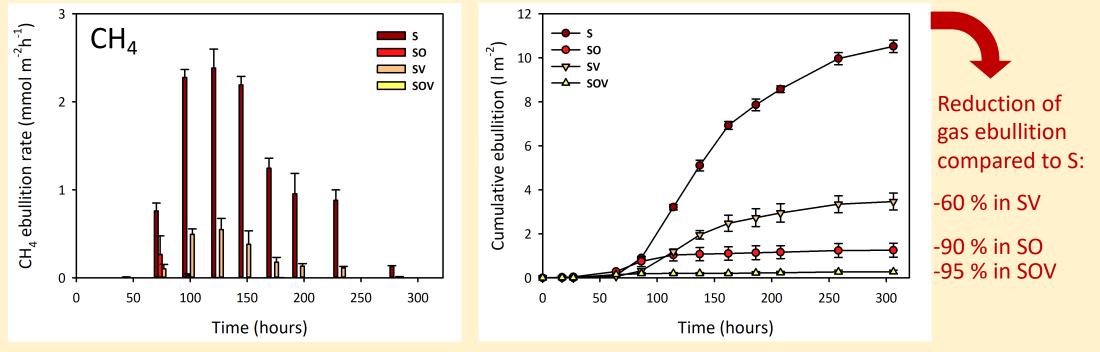


12 microcosms for ebullitive fluxes (n=3 per condition)


12 microcosms for diffusive fluxes (n=3 per condition)

Set up for ebullitive fluxes measurement

Set up for net fluxes measurement



320 h of incubation under
a light regime of 12 h dark and 12 h light

Dark & Light* batch incubations

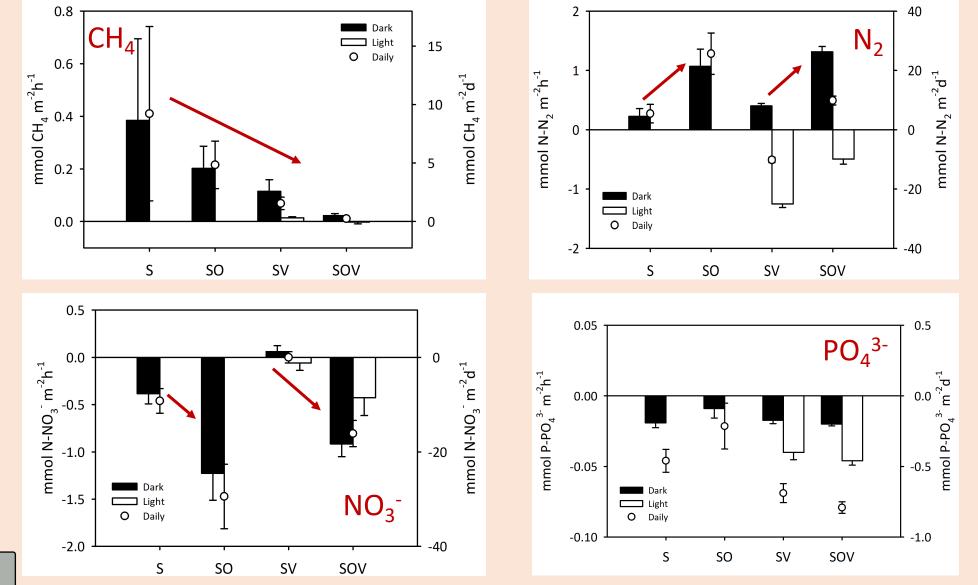
*light incubations only in SV and SOV conditions

Results: gas ebullition

CH₄ fluxes via ebullition peak after:

50 h of incubation in SOV

75 h of incubation in SO


125 h of incubation in SV and S

Total gas production during the experiment: 10 l m⁻² period⁻¹ in S 4 l m⁻² period⁻¹ in SV 1 l m⁻² period⁻¹ in SO 0.5 l m⁻² period⁻¹ in SOV

Results: net fluxes of gas and nutrients

Î

BY

Benelli Sara - EGU General Assembly 2020

Conclusions

Macrofauna and macrophyte roots **reduce CH₄ emission** in organic-rich fluvial sediments:

- *S. tamesis* by stimulating denitrification and sediment reoxidation
- *V. spiralis* by releasing O₂ via the roots and oxidizing the surrounding sediment

Macrofauna and macrophyte roots **attenuate nutrient recycling** in organic-rich fluvial sediments:

- *S. tamesis* favored inorganic N removal with implications to pelagic primary producers
- *V. spiralis* assimilated N and P reducing their recycling to the water column

The association of *S. tamesis* and *V. spiralis* alters the functioning of the benthic system, by promoting sediment oxidation and favouring O_2 and NO_3^- -based respiration at the expenses of methanogenesis and resulting in lower nutrients regeneration.

