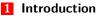


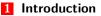
Detection of tsunami induced ionospheric perturbation with shipbased GNSS measurements: 2010 Maule tsunami case study

Michela Ravanelli¹ and James Foster²

¹Geodesy and Geomatics Division, DICEA, Sapienza University of Rome ²Hawaii Institute of Geophysics and Planetology, Honolulu, HI, USA

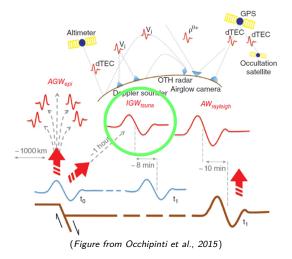

EGU2020: Sharing Geoscience Online G1.3: High-precision GNSS: methods, open problems and Geoscience applications May 4th, 2020

© Ravanelli and Foster. All rights reserved.


Michela Ravanelli and James Foster

Outlook	The VARION algorithm	2010 Maule earthquake and tsunami	Conclusions and prospects
•			

- The VARION algorithm
 VARION fundamentals
- **3** 2010 Maule earthquake and tsunami
- 4 Conclusions and prospects


Introduction	The VARION algorithm	2010 Maule earthquake and tsunami	Conclusions and prospects
0			

- The VARION algorithm
 VARION fundamentals
- **3** 2010 Maule earthquake and tsunami
- 4 Conclusions and prospects

Michela Ravanelli and James Foster

Travelling Ionospheric Disturbances (TIDs)

Travelling Ionospheric Disturbances (TIDs)

TIDs related to gravity waves

- atmosphere as low-pass filter: only waves with frequency lower than buoyancy frequency (about 3.3 mHz at sea level) reach the ionosphere
- strong amplification during the upward propagation (density decreasing, momentum conservation)
- ionosphere perturbations detectable with GNSS

	The VARION algorithm	2010 Maule earthquake and tsunami	Conclusions and prospects
	000		

- The VARION algorithm
 VARION fundamentals
- **3** 2010 Maule earthquake and tsunami
- 4 Conclusions and prospects

		The VARION algorithm ○●○	2010 Maule earthquake and tsunami	Conclusions and prospects
VARION fundam	entals			

VARION fundamentals

Variometric Approach for Real-time IOnosphere ObservatioN

Features

- derived from VADASE (real-time ground velocity and displacement)
- sTEC variation estimation from the observations of a stand-alone GNSS receiver (single station approach) in real time
- advantages: no infrastructure, no post-processing, no initialization needed

Realization

- designed in 2015 at Sapienza University of Rome
- developed and validated in 2016 in collaboration with the Jet Propulsion Laboratory, lonospheric and Atmospheric Remote Sensing Group

Reference

Savastano, G.; et al. Real-Time Detection of Tsunami lonospheric Disturbances with a Stand-Alone GNSS Receiver: A Preliminary Feasibility Demonstration. Sci. Rep. 2017, 7, 46607. DOI: 10.1038/srep46607.

Michela Ravanelli and James Foster

Detection of tsunami induced ionospheric perturbation with shipbased GNSS measurements: 2010 Maule tsunami case study

		The VARION algorithm	2010 Maule earthquake and tsunami	Conclusions and prospects	
		000			
VARION fundamentals					

VARION fundamentals

Methodology

$$\underbrace{L_{4R}^{S}(t+1)-L_{4R}^{S}(t)}_{=}$$

time single difference geometry-free observation

$$\underbrace{\frac{f_1^2 - f_2^2}{f_2^2} \left[I_{1R}^S(t+1) - I_{1R}^S(t) \right]}_{\text{unknown term, sTEC variation}} + \underbrace{\Delta m_R^S + \Delta \epsilon_R^S}_{noise}$$

Ship-based GNSS receiver application

the receiver motion does not affect the sTEC estimation process

		The VARION algorithm	2010 Maule earthquake and tsunami	Conclusions and prospects	
		000			
VARION fundamentals					

VARION fundamentals

Methodology

epoch-to-epoch sTEC variations

$$\delta sTEC(t+1,t) = \frac{f_1^2 f_2^2}{A(f_1^2 - f_2^2)} \left[L_{4R}^S(t+1) - L_{4R}^S(t) \right]$$
(1)

note: this is a total space-time variation

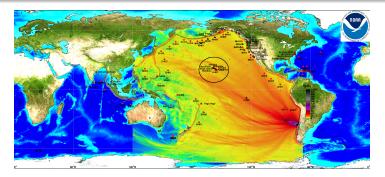
sTEC time series

$$\Delta sTEC(t_f, t_0) = \int_{t_0}^{t_f} dTEC(t)$$
(2)

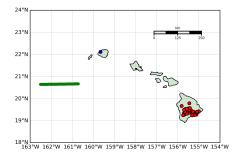
	The VARION algorithm	2010 Maule earthquake and tsunami	Conclusions and prospects
		000	

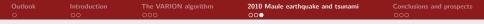
The VARION algorithm
 VARION fundamentals

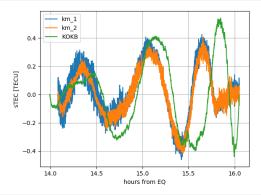
3 2010 Maule earthquake and tsunami


4 Conclusions and prospects

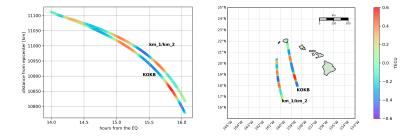
Michela Ravanelli and James Foster


Aim of the work


- Feasibility study on the possibility to use data from ship-based GNSS receiver to detect TIDs
- application to 2010, M_W 8.8 Chilean (Maule) earthquake and tsunami


	The VARION algorithm	2010 Maule earthquake and tsunami	Conclusions and prospects
		000	

- two GNSS receivers installed on a ship (green track) moving near Kauai Island in the Hawaiian archipelago
- one GNSS permanent station (KOKB) placed on Kauai (blue point)


- **two GNSS** receivers installed on a **ship** (green track) moving near Kauai Island in the Hawaiian archipelago
- one GNSS permanent station (KOKB) placed on Kauai (blue point)

Michela Ravanelli and James Foster

Detection of tsunami induced ionospheric perturbation with shipbased GNSS measurements: 2010 Maule tsunami case study

- two GNSS receivers installed on a ship (green track) moving near Kauai Island in the Hawaiian archipelago
- one GNSS permanent station (KOKB) placed on Kauai (blue point)

	The VARION algorithm	2010 Maule earthquake and tsunami	Conclusions and prospects
			000

- The VARION algorithm
 VARION fundamentals
- **3** 2010 Maule earthquake and tsunami
- 4 Conclusions and prospects

Conclusions and perspectives

Summarizing

Ship-based GNSS data for TIDs detection

- if the same satellite is considered, the detected TIDs is the same
- cost-effective tool
- densification of ionosphere monitoring

Outlook

real-time detection of TIDs for enhancing tsunami early warning system

Michela Ravanelli and James Foster

Detection of tsunami induced ionospheric perturbation with shipbased GNSS measurements: 2010 Maule tsunami case study

Thanks for your kind attention!

michela.ravanelli@uniroma1.it jfoster@soest.hawaii.edu

 $\ensuremath{\mathbb{C}}$ Ravanelli and Foster. All rights reserved.

Michela Ravanelli and James Foster

Detection of tsunami induced ionospheric perturbation with shipbased GNSS measurements: 2010 Maule tsunami case study