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The SNP in seasonal predictions with a comprehensive Earth System Model

The Signal-to-Noise Paradox (SNP, Dunstone et al., 2016 & Scaife et al., 2018 ):

Actual Predictability: Model predicting actual world

Model Predictability: Model predicting itself

Ratio of Predictable Components (RPC) =                                         > 1

RPC expected to be 1 but empirically RPC > 1             Signal-to-Noise Paradox 

Current Hypotheses:

1. Model deficiencies (e.g., Smith et al., 2016; O’Reilly et al., 2019; Stockdale et al., 2015)
2. Statistical uncertainties (e.g. Weisheimer et al., 2019)

Figure 1. Mean actual and model predictability for seasonal 
predictions with MPI-ESM for different ensemble sizes. The dark 
shading indicates the interquartile range, while the light shading 
indicates the minimum and maximum over 1000 random 
permutations of the ensemble.

Here, we formulate an alternative hypothesis by investigating under which conditions the SNP occurs in a simple dynamical model, the Lorenz 1963 
Model (Lorenz, 1963). Using a simple model allows us to explicitly formulate a perfect model framework, where model deficiencies can be ruled out 
and conduct computationally cheap experiments with different model setups.
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Seasonal Predictions in the Lorenz 1963 Model - a conceptual Framework

Figure 3. Illustration of the 
generation of initial states. The 
black line denotes the 
observational probability 
density function wich is 
centered around the true value 
(reference). From this PDF the 
analysis is drawn (black dot). 
Around the analysis an 
ensemble (blue crosses) is 
generated by sampling from 
the ensemble PDF (blue line) 
with standard deviation σe.
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Ensemble Generation: Time Integration:

Figure 2. Pool of initial 
conditions (blue line) acquired 
by integrating the model after a 
initial spinup phase for 10000 
time units. Black dots denote 
the 100 randomly chosen initial 
states for the 100 forecasts.

4) Model is integrated for 180 days starting from the initial reference 
and from each of the 100 ensemble members.
5) Analysis is generated by adding normally distributed noise on the 
reference run with standard deviation σo .
6) Ensemble simulations and analysis are averaged over one season 
(90 days) with 30 day lead-time.

1) Random initial state on the Lorenz Attractor chosen as initial state for the 
reference. 
2) The initial analysis is drawn from a normally distribution around the initial 
reference with standard deviation σo (observational spread). 
3) 100 initial states for the ensemble are drawn from a normal distribution around 
the initial analysis with a standard deviation of σe (initial  ensemble spread).

Repeated 100 times to yield 100-year 100-member ensemble hindcast 3



Equal Initial Spread experiment

We conduct 100 Hindcast Experiments each comprising 100 years 

and 100 ensemble members with initial ensemble spread σe  being 

equal to the observational spread σo but using different randomly 

chosen initial states.

The RPC as well as the actual predictability vary between the 
experiments, but the average over all experiments is close to the 
expected behaviour of RPC=1.

For all ensemble sizes the mean actual predictability is within the 
interquartile range of the model predictability for the experiment that 
is close to the average behaviour in Figure 4 a). 

 
Figure 4. 
a): Actual Predictability against RPC for 100 seasonal hindcast experiments at one 
month lead-time with equal initial ensemble spread and observational spread. The 
horizontal (vertical) dashed line indicates the mean of the RPC (Actual Predictability) 
over all hindcast experiments. 
b): Mean Actual Predictability and Mean Model Predictability in dependence of the 
ensemble size for a representative experiment. The dark shading indicates the 
interquartile range, while the light shading indicates the minimum and maximum over 
100 random permutations of the ensemble.

Equal initial ensemble spread  σe= 0.01, σo = 0.01

b)

The SNP does not occur in the Lorenz Framework if the initial ensemble 
spread represents the observational spread. 

What happens if we change the initial ensemble spread ? 

b)

a)

4



Unequal initial Spread Experiments 

Figure 5.
a): Actual predictability against RPC for 100 seasonal hindcast experiments at one month lead-time with a 10 times lower (left) and higher (right) initial ensemble spread 
compared to the observational spread. The horizontal (vertical) dashed line indicates the mean of the RPC (Actual Predictability) over all hindcast experiments. 
b): Mean Actual Predictability and mean model predictability in dependence of the ensemble size for a representative experiment. The dark shading indicates the 
interquartile range, while the light shading indicates the minimum and maximum over 100 random permutations of the ensemble.

Low initial ensemble spread  σe= 0.001, σo = 0.01 High initial ensemble spread  σe= 0.1, σo= 0.01

Even when the model is perfect, i.e. analysis and forecasts are produced by the same model with the same parameterization, the average model behaviour 
can appear to be overconfident (RPC < 1) or underconfident (RPC > 1) depending on the ratio of initial ensemble spread to observational spread.

b) b)

a)

a)

b)

a)

b)
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When does the Lorenz Model exhibit the Signal-to-Noise 
Paradox?

Based on our  experiments, we conclude that the Signal-to-Noise Paradox can occur if in the process of initialization the ensemble spread is 
overestimated compared to the observational spread even in a perfect model framework.  Our results suggest that the magnitude of the initial 
ensemble spread relative to the observational spread could be an alternative hypothesis for the origin of the SNP. 

Comprehensive ESM Conceptual Model 
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