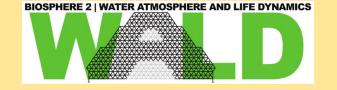

Soil Biogeochemical Response to Drought Conditions in the Biosphere 2 Rainforest

Joanne H. Shorter*, Joseph R. Roscioli*, Laura K. Meredith^, Juliana Gil-Loaiza^

*Aerodyne Research, Inc. MA, USA ^University of Arizona, AZ, USA

The Problem


- Much biogeochemical knowledge is gained from understanding interstitial trace gases in soil
 - N₂O, NO, NH₂OH, NH₃... for N-cycling
 - CO₂, CH₄, HCHO, CH₃OH, CO... for C-cycling
 - Isoprene, monoterpenes, sesquiterpenes, acetone... for metabolites, communications, warfare
- Above-ground flux measurement are an excellent tool for understanding the interface between subsurface and atmosphere
- For understanding subsurface processes measure right at the source
 - Subsurface probes that leverage atmospheric tools in the subsurface provide deep insights nutrient cycling and other bioprocesses

Biosphere 2 Water Atmosphere and Life Dynamics (WALD)

September 2019 – January 2020 Campaign

Field Site: Biosphere 2 Tropical Rainforest in Arizona, USA

Campaign Aims

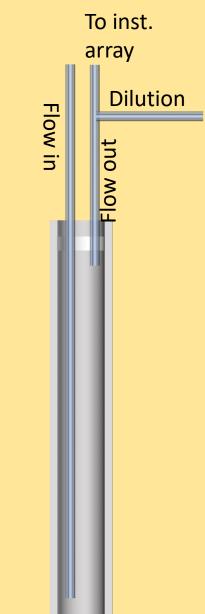
- To fully track, from molecules to the ecosystem, mechanisms driving the fate of carbon and water in forest systems under drought
- Investigate the mechanisms that drive plant-soil-microbe relationships

Main Question: What is the impact of drought and rewetting on a Tropical Rainforest?

Aerodyne/University of Arizona Goals

- Deployment of novel soil probes for semi-continuous, realtime measurement of subsurface dynamics
- Address the question: What is the Soil Biogeochemical Response to Drought and Rewetting in Tropical Rainforest? Focus on the impact on nitrogen cycle dynamics of drought and rewetting
 2-month drought followed by rewetting
- Observation of Birch effect in field measurement

Diffusive Gas Probes to Explore Subsurface Processes


- Buried hydrophobic porous probes
 - Examine subsurface dynamics by carrying subsurface gas to instruments
- Small, low profile
 - Spatially and temporally-resolved dynamics with high signalto-noise

Probe after several months in soil

New version of soil probe -- single ended design

Biosphere 2/WALD Campaign September 2019 – February 2020

12 probes deployed in 2 experiments during Biosphere 2/WALD campaign

A. Rhizosphere vs. Outside Root Zone (control)

3 probes in Palm Rhizosphere

3 probes in Palm Control (non-rhizosphere)

B. Effect of Soil Depth on Soil Dynamics

5 probes at different depths in soil pit

20, 50, 100, 200 and 300 cm depth

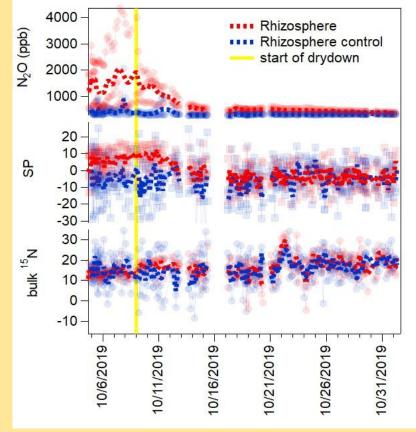
1 probe measuring ambient air

Measurement Details

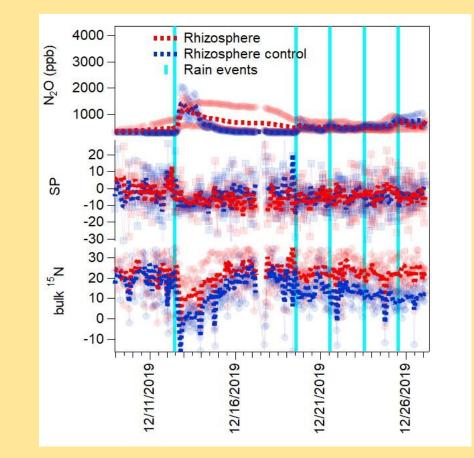
Dual-laser Tunable Infrared Laser Direct Absorption Spectrometers (TILDAS)

 N_2O and isotopes ${}^{14}N^{14}N^{16}O$ (446) ${}^{14}N^{15}N^{16}O$ (456, "alpha") ${}^{15}N^{14}N^{16}O$ (546, "beta") ${}^{14}N^{14}N^{18}O$ (448) CH_4 , ${}^{13}CH_4$ CO_2

Real time monitoring of $\delta456$ and $\delta546$

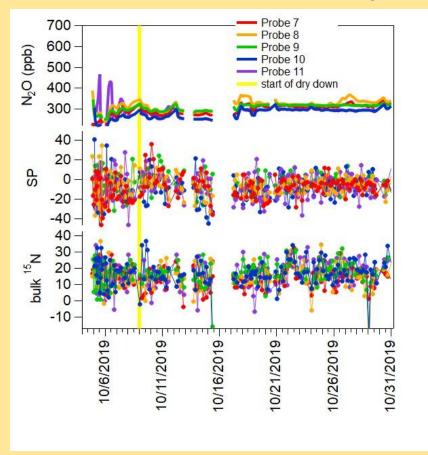

to yield δ^{15} N-bulk and SP= (δ 456- δ 546)

Timing: Measurement every 4 hours at each probe

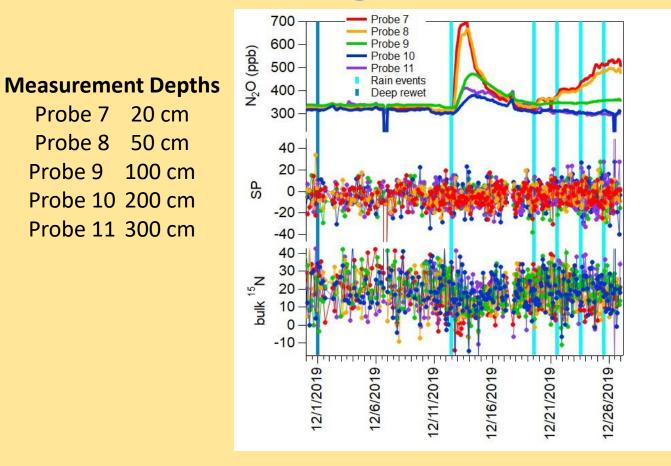

Developed a plug flow measurement scheme to sample from each probe with minimal impact on surrounding soil.

Response of Palm Rhizosphere vs. Palm Control to Dry down and Rewetting

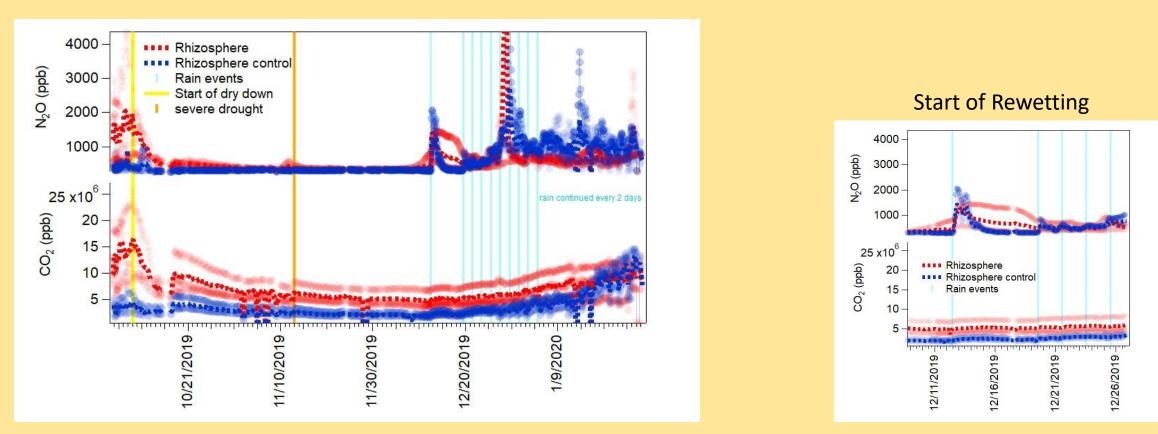
---- Rhizosphere = avg of rhizo. probes
--- Control = avg of control probes
Faded markers: Individual probes



Drop in N_2O in soil during dry down with shift in Rhizosphere SP


- Birch effect after rain, and increase in rhizosphere N₂O
- δ¹⁵N-bulk: after rain, Control returns to pre-drought level while Rhizosphere remains higher
- 1 Rhizosphere probe had larger, sustained N₂O incr.

Response of Soil at Different Depths to Dry down and Rewetting

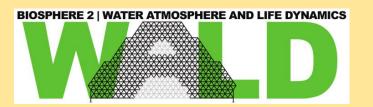

 $\rm N_2O$ at all depths approached ambient $\rm N_2O$ with dry down.

SP and $\delta^{15}N$ same at all depths

Deep rewet-- bottom probes respond slightly while others do not SP and $\delta^{15}N$ same at all depths $\delta^{15}N$ had small decrease with initial rain and then recovery

Soil Respiration Response to Drought and Rewet

- CO₂ decreased with dry down. It very slowly increased after rain.
- Respiration is slow to recover from system drought with the control region presenting a faster increase in CO₂.
- Possible negative rhizosphere priming in rhizosphere region


Summary

- Subsurface probes provided continuous measurement of soil dynamics for the entire drought and rewetting periods (5 months)
- Rhizosphere vs. control
 - Birch effect with the return of rain
 - δ¹⁵N of control returned to pre-drought level, but rhizosphere remained elevated
 - Observed a slow recovery of soil respiration especially in rhizosphere areapossible negative rhizosphere priming
- Soil depth response
 - Little difference in N₂O isotopic signatures across depths
 - Timing of Birch effect response as function of depth was observed
 - Probes closer to surface with greatest increase in N₂O after rain

Acknowledgements

Project funded by U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research Small Business Innovation Research Grant program under Award Number DE-SC0018459.

ERC VOCO #647008 WALD Project

- Philecology Foundation
- •Susan and Daniel Warmack
- Biosphere 2 admin and staff
- Water Atmospheric and Life Dynamic project (WALD)