SAPIENZA

A@Y ¥ \ ISTITUTO NAZIONALE
&I DI GEOFISICA E VULCANOLOGIA INFN
UNIVERSITA DI ROMA

.’/ _ Laboratori Nazionali
\/ del Gran Sasso

Universita degli Studi
di I’Aquila

Continuous monitoring of physical parameters
(temperature, electrical conductivity, water pressure) in
a karst aquifer of central Italy (Venafro Mts., Molise):
first results in a seismically active region.

Gaetano De Luca!, Giuseppe Di Carlo?, Alberto Frepoli!, Marco Moro!, Luca Pizzino!, Michele
Sarolil-?, Marco Tallini4, and Brando Trionfera®

1 Istituto Nazionale di Geofisica e Vulcanologia, Italy
2 Istituto Nazionale di Fisica Nucleare — Laboratori Nazionali del Gran Sasso, Italy
3Universita degli Studi di Cassino e del Lazio Meridionale-DICeM, Italy
4 Universita degli Studi dell’/Aquila — Dipartimento di Ingegneria Civile, Edile-Architettura e Ambientale, Italy
5 Universita La Sapienza, Rome, Italy



The seismic cycle is accompanied by stress
perturbations that possibly accelerate at the end
of the interseismic period, just before the
earthquake; stress modification can determine
fluids migration (dilatancy model, Nur, 1972;
Scholz et al., 1973). Therefore, changes in the
flow and geochemistry of groundwater prior to
an earthquake may be expected (e.g. King and
Muir-Wood, 1993; Skelton et al., 2014; Wang et
Manga, 2015). In fact, hydrologic effects of
strain during and after an earthquake have been
abundantly documented worldwide.
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In Italy, central and southern Apennines show a diffuse and highly
energetic seismic activity (CPTI15, M__,,.=7.0). Carbonate mountain
ranges host huge water (karst) and (spotty) CO, circulation at depth
(e.g. Chiodini et al., 2004; Frondini et al., 2018), making studies on the
relationship between fluids and earthquakes particularly stimulating

and, hopefully, effective.
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The effects of past earthquakes on groundwater in the central and southern
Apennine belt of Italy have been described by some papers:
- Celico (1981); Celico et al. (1981); Esposito et al. (2009, 2011): four
earthquakes in southern Apennines, including the Mw 6.9 1980 Irpinia

Q (Lfs)

earthquake;
Carro et al. (2005): 1997-1998 Umbria-Marche seismic sequence;

Amoruso et al. (2011); Adinolfi Falcone et al. 2012; Galassi et al. 2014:
L’'Aquila 2009 earthquake;
Barberio et al. (2017); Maestrelli et al. (2017); De Luca et al. (2016, 2018);
Petitta et al. (2018); Mastrorillo et al. (2020); Barbieri et al., 2020; Fronzi et
al. (2020); Valigi et al. (2020): 2016-2017 central Italy seismic sequence.
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Changes were observed mainly in the co and post-seismic phase and only a few short and
long-term pre-seismic signals were recorded (Esposito et al., 2001; De Luca et al., 2016,
2018; Moro et al., 2017). Some geological models (e.g. by Doglioni et al., 2014) were
proposed to explain the mechanisms that can generate these hydrological anomalies both
in extensional and compressional tectonics.
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Sampling rate spans from weeks to months, but higher frequency of data collection is needed to
study crustal deformation processes (stress and volumetric strain) during the earthquake cycle.



Since 2015, De Luca et al. (2016, 2018) have been performing high
frequency (up to 20 samples per second) continuous monitoring of
temperature, hydraulic pressure, and electrical conductivity in the
Gran Sasso aquifer (LNGS, central Italy). They recorded unambiguous
long-term (days to months) pre-August 24, 2016 earthquake
(M,=6.0) anomalies in both hydraulic pressure and electrical
conductivity, related to its preparation stage.
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Within this context, we decided to duplicate the equipment presently working in the Gran Sasso aquifer
in a site with a similar hydrological setting: the Venafro carbonate hydrostructure (Molise, Saroli et al.,
2019). The site we chose is located in one of the most seismically active sectors of central-southern
Apennine belt, repeatedly hit in the past by large magnitude earthquakes and crossed by up to 20 km-
long extensional fault systems (e.g. Galli & Naso, 2009; Saroli et al., 2016, 2019, 2020).
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Our experimental equipment includes a 3-channels 24-bit ADC set up
for continuous local recording in groundwater (De Luca et al., 2016,
2018) in a horizontal borehole located in the drainage gallery “San
Bartolomeo”, managed by Campania Aqueduct company. We started
data acquisition in May 2019 by high-frequency continuous sampling
(20 Hz for each channel) of physical parameters such as groundwater
temperature, electrical conductivity and hydraulic pressure.
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The main goals of our research are:

i)measuring and understanding the dynamics of the
carbonate aquifer (i.e. seasonal effect of loading and
unloading) through the analysis of rainfall;

ii) deepening the relationships between aquifer behavior
and earthquakes;

iii) to widen the monitored areas through the Apennine
belt;

iv) to compare seismic activity and the "response” of
physical signals (shape, amplitude, time of occurrence)
both in the Gran Sasso and Venafro monitored aquifers.



Central Italy earthquake: November 7th, 2019. M ,=4.4,
17:35 UTC
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Hydroseismograph of the November 7t", 2019 earthquake. M,,=4.4,
17.35 UTC

co and post seismic negative
offset (about 2 cm) of the fluid
pressure signal (i.e. lowering of
the water table), due to the
passage of seismic waves
(dynamic stress in an aquifer,
Manga and Wang, 2007)
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P and S waves appearing on the hydrograph are those that travel across
the mountain hosting the aquifer. The shaking of the mountain is
transferred to the fluid phase, affecting the hydraulic pressure signal.



Arrival times of P and S waves in the | .

hydroseismograph are compatible with
those recorded by the closest
seismometer (around 11 km from the

monitoring site) of the Italian Seismic @

Network (acronym CERA).
Revised earthquake location
provided by the Italian Seismic Bulletin
at http://terremoti.ingv.it/BSI
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Statistical analysis (variance) of the hydraulic pressure from October

10 to November 21, 2019 (black

arrow, M, =

4.4, 17:35 UTC)
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Spectral analysis at different Hz intervals: 0-0.5, 0-1 and 0-10 of the
hydraulic pressure referred to November 03, 2019 (the day of the
most noticeable anomaly) in the time span 12:00-18:00 UTC. Peaks
at 0.1 Hz and about 2.5 Hz were found.

0,045

November 3, 2019
0.04 1 anomaly

0,035

0.1 Hz

002 F

0,025

bar

0,02 F

0,015

0,01 -
mT W -

0 0,2 0,4 0,6 0.8 ik

Hz




Spectral analysis of the hydraulic pressure referred to November 03,
2019 (the day of the most noticeable anomaly). Analysis refers to
two time windows of the day: 00:00-06:00 and 12:00-18:00 UTC.
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Spectral analysis of the hydraulic pressure sighal: November 3 (the
day of the most noticeable anomaly), from 00:00 to 06:00 UTC. One
dominant frequency is highlighted at around 2.5 Hz.
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Spectral analysis of the hydraulic pressure signal: November 3 (the day
of the most noticeable anomaly), from 06:00 to 12:00 UTC. One dominant
frequency is highlighted at about 2.5 Hz. A weak 0.1Hz frequency is also

visible.

MMAYENALCHE1.CHE?X (I

. | | 1 |
y axis: M ‘ d| ‘ 1

log hertz

& MNHMEMAICHI T .
hydraulic pressure

time (hours)




Spectral analysis of the hydraulic pressure signal: November 3 (the
day of the most noticeable anomaly), from 12:00 to 18:00 UTC.
Two dominant frequencies are highlighted: 0.1 and about 2.5 Hz.
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Spectral analysis of the hydraulic pressure signal: November 3 (the day
of the most noticeable anomaly), from 18:00 to 00:00 UTC. Two dominant

frequencies are highlighted: 0.1 (up to 20:30 UTC) and ~ 2.5 Hz.
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Spectral analysis of the hydraulic pressure signal: November 7 (the
day of the M, 4.4. earthquake, 17:35 UTC), from 17:15 to 17:55
UTC. One dominant frequency at ~2.5 Hz appears. Any 0.1 Hz
frequency is evidenced.
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Zoom on the spectral analysis of the hydraulic pressure signal:
November 7 (the day of the M, 4.4. earthquake, 17:35 UTC), from 17:33

to 17:38 UTC. One frequency appears at ~2.5 Hz when earthquake takes
place.
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Open questions:

Which are the source(s) of statistical anomalies
and frequency content of hydraulic pressure
signhals recorded on November 3, 2019?

Are they linked to the November 7 earthquake?
What happened in the different time windows
we investigated?

What happened in terms of excited frequency
when the M, 4.4 earthquake took place?

Is frequency domain dependent from other

source(s) besides (possible) endogenous ones?



If we consider the daily rainfall at the Venafro site on November 2019, it results that
high amount of rain (~ 100 and 50 mm) fell on days 3 and 5, respectively. The other
two rainiest period of the month was 16 through 18 (83 mm).
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Statistical analysis (variance) of the hydraulic pressure from October
10 to November 21, 2019 (black arrow, M, = 4.4) vs rainfall.
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Statistical anomalies of the hydraulic pressure from October 10 to November
21, 2019 (black arrow, M,,=4.4) coincide exactly with the rainiest days/period.
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In particular, a detailed study on the frequency content of the
hydraulic pressure referred to November 03, 2019 reveals that the
dominant peak was found at 0.1 Hz. Therefore, we can assume it as
the typical frequency response of the Venafro aquifer in case of
moderate-to high rain episodes (> 50 mm).

0,045

November 3, 2019
0.04 1 anomaly

0.1 Hz

bar

0,01 -
LT W -

0 0,2 0,4 0,6 0.8 ik

Hz




If we analyse the frequency content of the hydraulic pressure in a day
with minor rain (example October 7, 11 mm cumulated), only a vey weak
signal at 0.1 Hz appears. Furthermore, all dry days don‘t show that

frequency.
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Daily rainfall at the Venafro site in October 2019
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In all spectrograms (irrespective of rain/no rain) the hydraulic
pressure signal shows a permanent frequency of ~ 2.5 Hz.

In case of dry days/periods, the 0.1 Hz frequency doesn’t appear.
The example refers to September 7, 2019 (00:00 to 06:00 UTC).
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Daily rainfall at the Venafro site in September 2019
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So, we can move to the preliminary conclusions of
our study and answer some questions (part I):

a) We found two main frequencies in the hydraulic
pressure recorded at the Venafro aquifer:

1) temporary 0.1 Hz, due to moderate to high
rainy episodes. It can be due to the quick inflow of
rain water into the karst conduits of the Venafro
hydrostructure;

2) permanent ~ 2.5 Hz, probably due to the
water Iintake structures of the aqueduct. This
frequency also appeared when the M, =4.4.
magnitude earthquake occurred (resonance of the
aquifer).



So, we can move to the preliminary conclusions of
our study and answer some questions (part II):

b) Anomalies of days 3 and 5 are likely not
linked to the November 7, M, 4.4 earthquake;

c) We recorded co and post seismic negative
offset (about /2 cm) of the fluid pressure (i.e.
lowering of the water table), due to the passage of
seismic waves (dynamic stress in an aquifer);

d) We highlighted the importance of
performing a very high-rate water sampling, coupled
with: i) detailed data statistical analysis; i1i) the
study of the time-series frequency domains and iii)
rainfall data (possibly hourly) analysis.



Future developments:

a)Going on with the acquisition of continuous
physical parameters in the Venafro aquifer (T, E.C.
and water pressure), by comparing time-series
with local/regional seismicity and rainfall;

b)To widen the monitored sectors through the
southern Apennine belt by installing a third
monitoring station in a selected well located in the
seismically active area of the Matese mountains
(Campania region);

c) Coupling the continuous monitoring of physical
parameters with a discrete (sampling every 1
week) hydrochemical data acquisition at both
Gran Sasso and Venafro sites;



Future developments:

d) Statistical and spectral analyses of both
temperature and waters salinity time-series;

e) Installation of a GPS station at Venafro site to
compare aquifer behaviour (in terms of seasonal
loading/unloading, pre-co and post-seismic
response; heavy rainfall episodes in a short time
span, prolonged drought periods) and
horizontal/vertical deformation of the karst
hydrostructure.



