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Introduction
● What is the relationship between sea ice thickness and 

surface morphology?

● Prior work from Mei et al. (2019) showed that sea ice thickness 
could be predicted from the surface elevation (lidar scan), at local 
(25 m) scales with 20% error. 

● This is better than linear regressions that fit sea ice thickness to 
surface elevation directly, which may have errors up to 50% when 
applied to large-scale data from ICE-Sat (Kern  & Spreen 2015).

● Can we generalize this to larger data sets?
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Introduction

If we can predict the snow depth D from the snow freeboard F, we can 
essentially predict SIT directly (with the caveat that the density of snow is 
not necessarily constant, nor well-constrained).
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Fig. 2. Flight tracks used in this 
study, in the Weddell Sea.

Data

Fig 1. Operation IceBridge lidar surface 
elevation scan, showing the conical 
scanning lidar. Image credit: NASA
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Fig 3. Leadfinding algorithm, in order to 
reference F to sea level correctly. Geoidal 
model (EGM2008-1) is only accurate to 1-4 m.

Methods – lead processing

The data used here is the L1b Airborne 
Topographic Mapper from Operation IceBridge. 
This data is referenced to the WGS84 ellipsoid, 
so we first have to reference these to local sea 
surface height. To do this, we developed a lead 
finding algorithm that uses the orthorectified 
and geolocated camera imagery from OIB.

The lead heights are then used to correct the 
surface elevation data using an inverse 
distance weighting. The typical error for the 
lead finding is less than 3 cm.

For a demo of the lead finding algorithm click 
here.

https://github.com/jeffreymei/cryo-toolbox/blob/master/leadfind_demo/Lead_Finding_Demo.ipynb
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Fig. 4. Example lidar (right), windowed to 180 x 180 
m, with snow depths (circles), and aerial 
photography (left). The snow depths are only 1D.

Preprocessing

This lead-referenced surface freeboard 
data is then interpolated onto a 180 x 
180 grid (resolution 1m) using natural 
neighbor interpolation, as shown in Fig. 
4. The snow depths for that segment are 
also shown (circles) – note that it is a 
nadir-looking data so the data is 1D. The 
mean snow depth of this lidar window is 
NOT necessarily the mean of the raw 
snow depth points for this window.
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Methods - segmentation

Fig 5. Segmentation algorithm. The lidar window is first segmented using Gabor filters (B), then adjacent 
segments with similar (within 2%) entropy** (C) and skew** (D) are merged together, until the no new 
mergings can be completed (E). This gives the final segments (F).

** these metrics were chosen by using a decision tree with manually-classified lidar+images.

To extrapolate the snow depths, we first have to segment the lidar scans into area of similar texture. 
We are assuming that the snow depth (in particular, the snow/ice ratio) is similar for texturally-
similar areas). For example, we may expect that ridged surfaces to have a different snow distribution 
than flat surfaces, but to have a similar snow distribution to another (nearby) ridge.
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Methods - extrapolation

Fig 6. Segment-matching, color-coded for reference. For example, 1b is matched with 4b and 5b. A weighted 
average of the mean F/D ratios for 4b and 5b is taken (weighted by similarity and number of snow depth 
samples), and is applied to the mean F of 1b to get the extrapolated snow depth. Note that these are just 
randomly sampled lidar windows, as the full algorithm looks for all segments within ±10 km (up to 120 
windows).

For a working example of the extrapolation method, see here. 

Now we can use the segments to extrapolate the snow line, in order to get a more 
accurate mean snow depth corresponding to each 180 x 180 m lidar window.

https://github.com/jeffreymei/cryo-toolbox/blob/master/textureseg_demo/Segmentor_Demo.ipynb
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Results
To check for biases and errors, we first try the extrapolation 
algorithm on the set of segments that do have snow depths 
on them (the ‘snow line’). For segments on this line, those 
that are successfully matched to another segment are 
called ‘completions’.

There are two main biases: Extrapolation bias & 
Sampling bias:

Extrapolation bias: red vs blue line – difference in mean, 
0.5 cm. So the extrapolation algorithm is not that biased.

Sampling bias: blue vs green line – difference in mean, 4.4 
cm. So, the snow depth sampled by OIB are likely biased 
(consistent with findings from Kwok & Maksym 2014).

The mean snow of the non-completions is 16 cm higher – 
probably because thicker surfaces are fewer in number 
(harder to match) and also are likely to be rougher, and less 
likely to give a snow depth return (Farrell 2012, Kwok 2011).

The mean relative error of the snow depth extrapolation is 
22.5%. Now we can see if the mean snow depth can be 
related to the snow surface.

Fig 7. Distributions in snow depth for 
different groups of segments.
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Learning D as a function of F
Now we know the ‘true’ snow depth (extrapolated to the full lidar window), we 
can use that as the output (to be predicted) from the input (lidar windows).

Following Mei et al (2019), we turn to convolutional neural networks, as they 
best use spatial information.

Fig. 8. ConvNet Architecture (LeNail 2019) 
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Results

Fig. 9. Scatter plots of the predicted vs true snow 
depths (left) and their overall distributions (right) 
for the training/validation/test sets.

Training + Validation data were taken from the 
2010/10/28 flight, randomly split 80%-20%. Test 
data were taken from 2016/10/17 flight (so an 
independent sample). The linear fit (fitting D to 
F) is also fit over the training set.

Linear fit has similar fit and test errors but only 
because the fit is not particularly great. The 
ConvNet predicts the test set distribution almost 
perfectly, despite the test distribution being 
somewhat different to the training one. The 
linear fit gets the distribution of the test set 
markedly wrong.

The linear fit (by definition) would predict the 
training mean snow depth correctly, but clearly 
overestimates the test snow depth mean.

ConvNet results: predicting mean snow depth 
with relative error 20%, RMSE 4.5 cm.
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Discussion – learned weights
Layer 1: gradients, i.e. edge 
detectors

Layer 2: steerable pyramid 
kernels (compare to Fig. 11)

Layer 3: textural components?

Fig 11. Examples of steerable pyramid 
kernels corresponding to first and second 
Gaussian derivatives (Freeman 1991)

Fig 10. Learned weights for select filters for the first 
three convolutional layers in the ConvNet.



14

Discussion – larger scale errors

So we saw earlier that the mean 
snow depth at 180 m scale had a 
typical mean error of 20%. What 
about larger-scale errors? 

Vertical lines show the mean relative 
error. At 1.5 km, mean relative error 
is 14.0%.

As can be seen in Fig. 12, the mean 
error reduces as we average over 
longer segments, and the linear fit 
error approaches the ConvNet error.

Fig. 12. Overall errors for segment-
averaged snow depth, for 1.5-25 km 
segments, applied to the test set.
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Everything together

Fig. 13. An example flight segment, showing the lead-
referenced snow freeboard (top) and the snow depth and 
snow freeboard measurements and estimates. ConvNet 
average error: 18%; linear fit: 29%.

1. F > D for measured points, 
but not when averaged → 
mean of raw snow points is 
biased

2. Linear underpredicts thick 
snow and overpredicts thin 
snow (i.e. regresses to mean)

3. D is not a function of F. 
Same F, different D (both 
extrapolated and measured) 
(see arrows)

4. Extrapolation agrees with 
raw mean when points have 
low vertical variability (x = 
1.8), less so near ridges (x = 
3.1 km) (see arrows)
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First order error for thickness (ϵT) as a function of 
snow, ice, seawater densities, and F and D, from 
Giles (2007).

Discussion: Implications for SIT

Using uncertainties from literature for ϵ(ρi)=20 kgm-3, ϵ(ρs)=50 kgm-3, ϵ(ρw)=1 
kgm-3, we work out ϵD = 14% x 0.22 m = 0.033 m, ϵF = 0.016 m.

This gives a mean SIT of 2.79 ± 0.57 m (20% error). The error is dominated by the uncertainty in 
ρi (49 cm); the uncertainty from ρs, D and F are comparable, and the uncertainty from ρw is 
negligible. 
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Conclusions

- Snow depth on sea ice can be predicted, at scales of 180 m – 1.5 
km, with errors of 14-20%. 

- Thisgives errors in sea ice thickness of ~20%.

- The learned filters support the idea that snow surface texture is 
related to snow depth (and hence sea ice thickness). These features 
may be generalized between different Weddell sea datasets from 
different years.
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Future work
● More years, more regions – any textural classes? What is the 

variability temporally and regionally? Are the textural features 
generalizable?

● Can we resolve trends beyond interannual variability?

● Can any of these techniques be applied to ICESat-2 data? (13m 
footprint, heavily oversampled (0.7m along-track)
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