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1. INTRODUCTION 2. METHODOLOGY

Ground source heat pump (GSHP) systems benefit from the thermal inertia of the subsurface, i.e. a constant ground temperature all year long, which Modeling within all three case studies is performed using FEFLOW® which offers different approaches for Simulating heat transport around BHEs (DierSCh et al.
permits its use of these systems for both heating and/or cooling. This fragile equilibrium between the heat pump system’s thermal loads and the rate of  2010):

thermal renewal in the subsurface needs to be maintained over the life of the system to ensure sufficient energy savings. With increasing deployment of (1) via a Heat Nodal Sink/Source Boundary Condition within a fully discretized 2D or 3D model. This approach simulates BHE thermal exchange with the

these systems in the subsurface of urban areas, there is growing potential (and risk) for these systems to considerably impact the subsurface thermal surrounding soil/rock, while thermal transfers within the BHE configuration are not explicitly considered. [Used in modelling study II]
regimes and also to interact with other heat-sensitive subsurface infrastructures, such as tunnels, building foundations or with other shallow energy

abstraction / storage systems. This study details three modelling-based case studies that investigate the changes in the performance of typical Ground
Coupled Heat Pump (GCHP) systems (different designs and operational pattern) in response to perturbations in the hydrogeological and/or thermal regimes.
The specific objectives vary for the different case studies, but the overall aim of this investigation is to: (1) compare GCHP response to changing state or
process variables within different hydrogeological / thermal systems and (2) assess the impact of interferences with other subsurface uses on
the GCHPs operational efficiency.

(2) via built-in modules, based on numerical (Al-Khoury and Bonnier, 2006) or analytical (Eskilson and Claesson, 1988) methods, where the BHE is represented
by a simplified 1-dimensional (1D) element, inserted at the centre node of the BHE and coupled with the rest of the model domain. FEFLOW® solves the
governing flow and heat transport equations for the area surrounding the BHE; a BHE solution is coupled with the rest of the model domain through the
temperatures at borehole nodes. [Used in modelling studies | and Ili]

3. CASE STUDIES

Modelling Study I: University of Western Ontario campus, Canada Modelling Study Il: London Road, Reading, UK Modelling Study lll: Carignan-Saliéres elementary school, Montréal, Canada

L Objectives:
Objectives: . . . :
(1) To assess interactions between systems at high-density deployment

(1) To assess how a functioning GCHP system could be expanded (2) To investigate the impact of hydrogeological conditions and heating loads on system performance
(2) To investigate effects of installing upstream system on the efficiency of the existing system J P YETDIERRS ’ ’ " (¢} To anticipate potential eperafional interlerence with dewatering of  nearty quary.

(3) To assess importance of fully accounting for near surface thermal disturbances in the modelling. Approach: 2-D model (Fig 4) Approach: 3-D model (Fig 5) a)
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Objectives:
(1) To predict the long-term performance of BHE field affected by variable groundwater flow

Approach: 3-D model (Fig. 1)
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» Three modelling case studies have shown that GCHP system efficiency can be considerably impacted by changes in the thermal and hydrogeological regimes. » While the risk of thermal interference is widely recognised and modelled, interferences caused by groundwater abstraction or injection on GCHP

systems is rarely considered. » Changes in hydrogeological regime were confirmed as one of the key controls on GCHP performance in all three studies, and especially for study Il where GCHP system is interacting with a dewatered quarry showing efficiency improvements even at small groundwater flow rates. »

This highlights the_need for subsurface activities that can change subsurface groundwater flows to be considered in the design and operation of BHEs as these activities have potential to interfere with / impact on nearby GCHP schemes.

» The studies have further shown that thermal interference is unavoidable where individual systems are installed in close proximity, and that far-field interferences from operations at distances of 100-1000m can have equal or higher impacts on system efficiency than systems interacting within the BHE field. » This

supports the argument of needing some regulation that requires reqistration of such GCHP systems with records of locations and approximate heat pump capacity — even though these systems do not abstract or inject groundwater. » Addltlonal regulation can be put in place to ensure the subsurface thermal equilibrium

S mamtamed around GCHP systems, possibly using a threshold temperature yet to be defined. » Requlations like this currently do not exist in the UK or Canada and there is potential for mterference problems to arise as numbe ' s rapldly Increase. » A ritical evaluatlon of
1 effi 'nC|es and CO, saving must be undertaken, and this must include a requirement for better monitoring these systems to provide data set that enable a better understanding of the gro ] -

" (2006). International Journal for Numerical Methods in Engineering 67(5): 725-745.; Diersch, H. J. G., et al. (2010). WASY Software FEFLOW White Paper 5: 5-96.
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