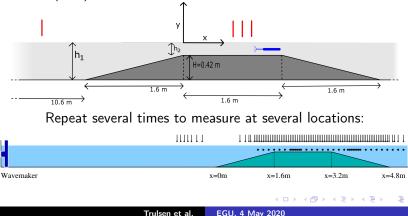
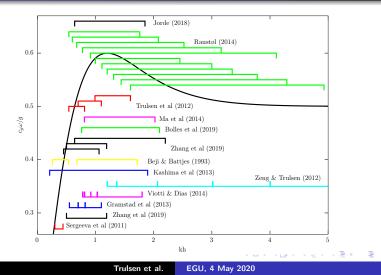
Extreme surface elevation and water velocity in irregular waves propagating over a shoal


Karsten Trulsen & Christopher Lawrence with experimental data from Stian Jorde

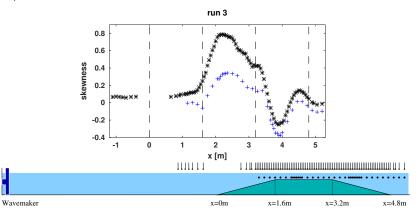
Department of Mathematics University of Oslo


4 May 2020

Experiment of Stian Jorde (2018): measure surface elevation and velocity field in irregular waves over a shoal

A single run: Surface elevation measured with ultrasound probes at four locations (red), velocity field measured with ADV at one location (blue):

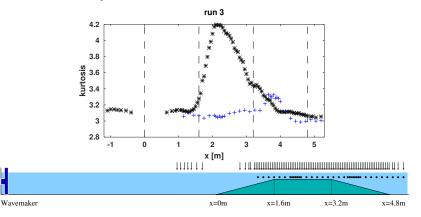
Similar experiments and simulations have been done by many limiting to surface elevation. Simultaneous elevation and velocity measurements only reported by Jorde (2018).



When waves come from deeper water onto a sufficiently shallow shoal there can be large excursions of kurtosis and skewness near the edge of the shoal some distance into the shoal.

Summarized in:

Trulsen, K., Raustøl, A., Jorde, S. & Rye, L. B. (2020) Extreme wave statistics of longcrested irregular waves over a shoal. *J. Fluid Mech.* **882**, R2.


Skewness of surface elevation (black *) and of velocity field (blue +) behave similarly:

< A > < 3

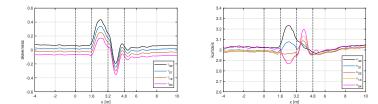
Experimental result of Stian Jorde:

Kurtosis of surface elevation (black *) and of velocity field (blue +) behave differently:

Are rogue elevation waves and rogue kinematics waves of a different kind?

Trulsen et al.	EGU, 4 May 2020
----------------	-----------------

If rogue elevation waves and rogue kinematics waves are of a different kind, try to visualize how their comoments behave.


Coskewness (n + m = 3): $\gamma_{n,m} = \frac{E[(\eta - \bar{\eta})^n(v - \bar{v})^m]}{\sigma_{\eta}^n \sigma_v^m}$

Cokurtosis (n + m = 4):

$$\kappa_{n,m} = \frac{E[(\eta - \bar{\eta})^n (v - \bar{v})^m]}{\sigma_{\eta}^n \sigma_v^m}$$

Sorry, some synchronization problems in our lab prevented us from computing comoments from measurements so far, we hope to present them soon, but in the mean time ...

Numerical simulations of Christopher Lawrence allowed computing comoments

47 ▶ ◀

Laboratory experiments and numerical simulations show that extreme surface elevation and extreme velocity field can be dramatically different as a wave field propagates through an inhomogeneous environment.

We anticipate that a wave train can possess rogue surface elevation waves and rogue velocity waves that are of a different kind.

This can have serious implications for a correct assessment of the threat posed by rogue waves.

Do we need different rogue wave criteria for surface elevation and kinematics?