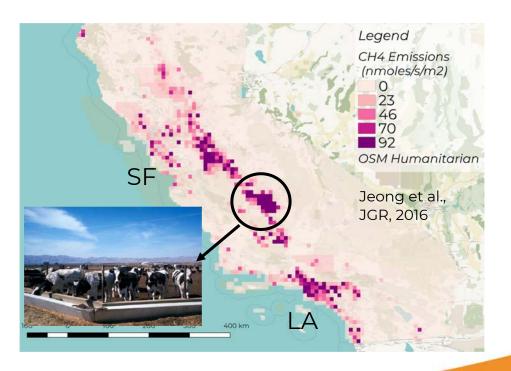


Observations of Methane Emissions from California Dairies from Ground and Space: New Top-Down Constraints at Regional Scales

M. Dubey¹, S. Heerah¹, I. Frausto-Vicencio², S. Jeong³

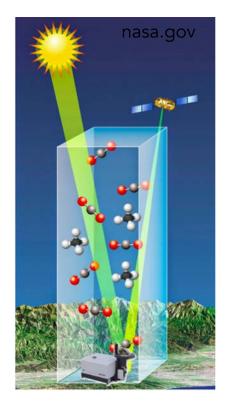
M. Fischer³ and F. Hopkins²



California Central Valley Hotspot: Dairies

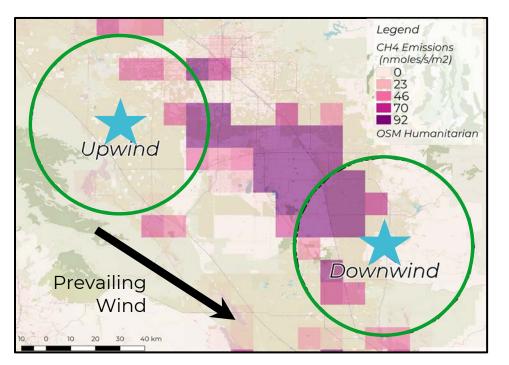
- 330 Gg/yr CH₄ inventory emissions¹
 (~ LA basin's emissions²)
- ♦ 80% from dairy industry¹
- California committed to reduce CH₄ emissions³
- Emissions are uncertain⁴, limits effective policy

¹CALGEM, ² e.g. Hedelius et al., ACP, 2018 ³ Assembly Bill 32



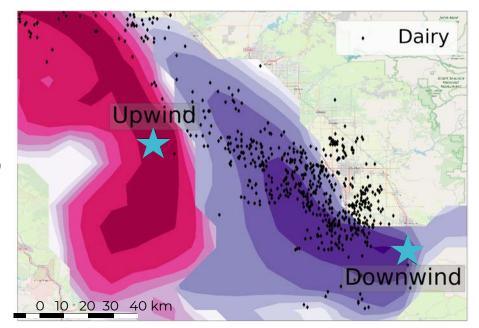
XCH₄ Measurements

- \star XCH₄ = Avg. CH₄ dry concentration in atmospheric column
- Derived from absorption spectra measured from ground or space
- Less sensitive to vertical mixing and boundary layer height



Measurement Setup

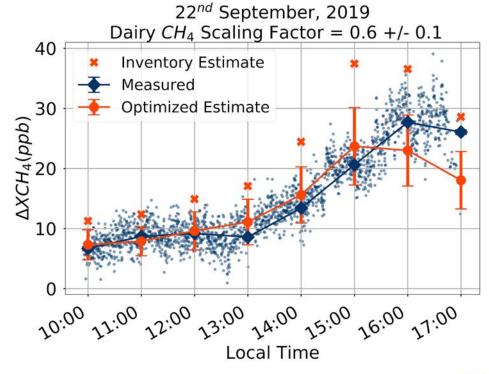
EM27/SUN portable ground spectrometer higher precision


GoSAT satellite spectrometer lower precision, measures every 3 days

 $\Delta XCH_4 = Downwind XCH_4 - Upwind XCH_4$

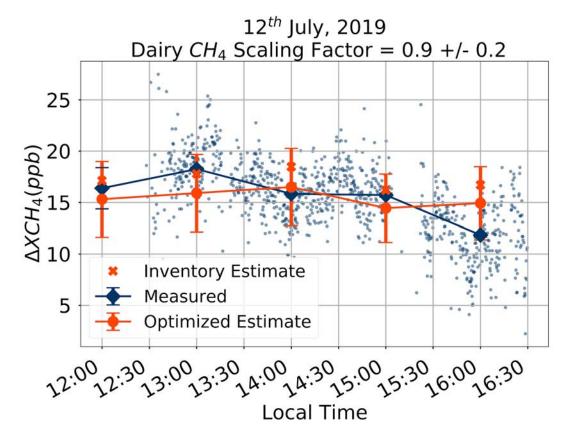
Atmospheric Transport Modeling

S. Heerah in prepn. 2020

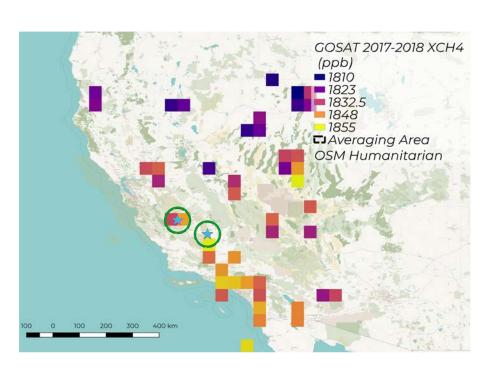

WRF-STILT ¹ uses 3D wind field² to model CH₄ sources that the instruments are sensitive to. Run for 7 days to capture far field sensitivity.

¹EM27 model from T. Jones, ²WRF runs from S. Jeong

Ground EM27/SUN AXCH₄ Emission Inversion


- Bayesian inversion with model error statistics from Zhao et al., 2009
- ❖ During field measurement days in Summer and Fall 2019, CALGEM emissions are high compared to measurements
- 4 days of winter data collected in 2020 being analyzed

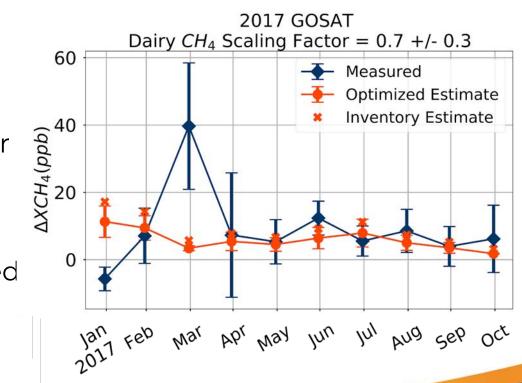
Scale Factor = 0.6 + - 0.1, 9/22/19



Scale Factor = 0.9 + - 0.2, 7/12/19

Space-based GOSAT Δ XCH₄

¹SRON 2.3.9 Proxy L2 data


- ❖ GoSat measurements in hotspot in 2017¹
- Look at soundings within 0.5° of EM27 locations
- ♦ 65 ΔXCH₄ measurements in early afternoon

Space-based GOSAT Emission Inversion

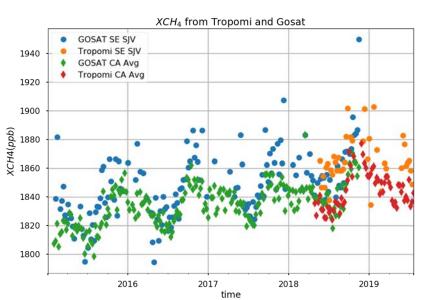
- Error statistics based on monthly standard errors for model runs and soundings
- 2017 GoSat inversion¹: 0.7 ±0.3 dairy scaling factor
- Overlaps with ground based factors

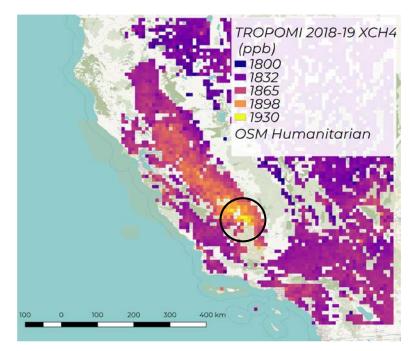
¹ NAM 12 km fields from arl.gov

Top-down SJV CH₄ Emissions Comparisons

Study	Measurement	Period	CALGEM x Scale Factor
Cui et al., 2015	CALNEX aircraft [CH ₄]	4 afternoon Flights in May & June 2010	Inventory <i>low</i> by x1.7
Jeong et. al, 2016	In-situ Tower Network	Afternoons June 2013 - May 2014	Inventory low by x1.5
Heerah et al, in prep. 2020	EM27/SUN	2 days July & September, 2019	Inventory high by x0.8
Heerah et al, in prep. 2020	GOSAT	65 afternoon soundings 2017	Inventory high by x0.7

Why our inversions are lower than published studies?


- Different source sensitivity within SJV between studies
- ❖ Biases in modelling XCH₄ with WRF-STILT e.g. averaging kernels, treatment of free troposphere & stratosphere etc.
- Larger sensitivity footprints in XCH₄ measurements make them more sensitive to night-time emissions which are likely lower for dairy sources (less activity, cooler temperature)
- Changes in dairy industry practices since older studies


We are working to assess these effect to resolve discrepancies

Future Work: TROPOMI Satellite

TROPOMI XCH₄ matches GoSat

Offers potential to map and constrain emissions at much higher resolution but a lot of data in region filtered out by gc flags

Conclusions

- Methane gradients from both ground and space observed at SJV and attributed to dairies.
- Our top-down XCH $_4$ analysis do not show an underestimate in bottom-up emission inventories for the periods and footprints that we sampled.