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Heat flux in the solar wind

there is an upper bound on the 
electron heat flux that depends 

on the electron beta
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𝛽𝑒 = 8𝜋𝑛𝑒𝑇𝑒/𝐵0
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𝒗 = න𝒗𝑓(𝒗)𝑑3𝑣

Gary+, Phys. Plasmas, 1999

𝒒𝑒 = −𝜅 𝛻𝑇𝑒

Spitzer-Hӓrm law

Tong+, ApJ, 2019

The collisional Spitzer-Hӓrm law is not
applicable in the solar wind and solar
corona [e.g., Hollweg, 1974; Scudder,
1992]

The heat flux suppression below the
collisional values was demonstrated
by direct in-situ measurements in the
solar wind (Feldman+, JGR, 1975;
Scime+, JGR, 1994; Gary+, Phys.
Plasmas, 1999; Tong+, ApJ, 2019)

One of the possible mechanisms of
the heat flux regulation in the solar
wind is the wave-particle interaction.
It was hypothesized that whistler
waves driven by the whistler heat flux
instability might be responsible for the
heat flux regulation (Gary+, Phys.
Plasmas, 1999; ApJ, 2000)



Whistler heat flux instability (WHFI)
- consider electron VDF with drifting core + halo

populations

- the electron heat flux  is proportional to drifts of 
core and halo populations

- heat flux is a free energy capable of driving 
several so-called heat flux instabilities

- whistler waves grow fastest for a wide range of 
parameters (whistler heat flux instability) 

WHFI
- whistler are quasi-parallel propagating, k || qe

- whistlers are driven by cyclotron resonant halo 
electrons

- whistlers produced by WHFI were suggested to 
regulate the heat flux in the collisionless solar 
wind
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Gary+, JGR, 1975



Heat flux regulation in the solar wind

the major argument behind Gary+ hypothesis:
beta dependence of the observed upper bound on the electron heat flux is 

similar to the linear marginal stability threshold of the WHFI 4

Tong+, APJ, 2019Gary et al., JGR, 1975 



Problems

- no direct evidence of whistler waves generated by WHFI in the solar wind
and no detailed understanding of typical whistler wave parameters in the
solar wind

- Are whistler waves generated locally by the WHFI in the solar wind?

- What are whistler wave amplitudes, obliqueness, frequency etc.?

- no PIC simulations that would demonstrate that whistler waves generated by
the WHFI can regulate the electron heat flux in the solar wind
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Observations of whistler waves at 1AU

6

All data
- ARTEMIS 2011-2013
- clean solar wind, 359 days, ~ 1300 hours
- 800,000 magnetic field spectra (8s res)
- restrict to flh < f < fce and to [16, 300] Hz
- particle moments 3s or 96s cadence

intense whistler wave events
- significant power: PB > 3 Pg
- 17,000 spectra, ~ 30 hours
- 2% of all spectra
- || propagating whistler waves (>80%)

frequencies and e-folding time of the 

most unstable whistler waves are

consistent with linear stability analysis

Tong, Y., Vasko, I. Y., Artemyev, A., Bale, S. D., & Mozer,
F. S. 2019, ApJ, doi: 10.3847/1538-4357/ab1f05

Tong, Y., Vasko, I. Y., Pulupa, M., et al. 2019, ApJL, 870,
L6, doi: 10.3847/2041-8213/aaf734

https://doi.org/10.3847/1538-4357/ab1f05
https://doi.org/10.3847/2041-8213/aaf734


PIC simulations

electrons = Maxwellian Core + Maxwellian Halo:

𝐹𝑒 =
𝑛𝑐

2𝜋𝑣𝑐
2 3/2

exp −
Ԧ𝑣 − 𝑢𝑐

2

2𝑣𝑐
2 +

𝑛ℎ

2𝜋𝑣ℎ
2 3/2

exp −
Ԧ𝑣 − 𝑢ℎ

2

2𝑣ℎ
2

Zero total current:
𝑛𝑐𝑢𝑐 + 𝑛ℎ𝑢ℎ = 0

Uniform background magnetic field

𝐵0 = 𝐵0, 0, 0 , 𝑢ℎ ||𝐵0
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PIC simulations parameters:

electrons = Maxwellian Core + Maxwellian Halo:

𝐹𝑒 =
𝑛𝑐

2𝜋𝑣𝑐
2 3/2

exp −
Ԧ𝑣 − 𝑢𝑐

2

2𝑣𝑐
2 +

𝑛ℎ

2𝜋𝑣ℎ
2 3/2

exp −
Ԧ𝑣 − 𝑢ℎ

2

2𝑣ℎ
2

𝑛𝑐 = 0.85, 𝑛ℎ = 0.15

𝛽𝑐 = 1; 0.4; 2 & 3

𝑣ℎ
2/𝑣𝑐

2 = 10

Electron plasma to cyclotron frequency ratio: 𝜔𝑝𝑒/𝜔𝑐𝑒 ≈ 10 − 20
(varies within this range for various initial 𝛽𝑐)
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Linear stability analysis of the WHFI
- core+halo electron VDF

𝐹𝑒 =
𝑛𝑐

2𝜋𝑣𝑐
2 3/2

exp −
Ԧ𝑣 − 𝑢𝑐

2

2𝑣𝑐
2 +

𝑛ℎ

2𝜋𝑣ℎ
2 3/2

exp −
Ԧ𝑣 − 𝑢ℎ

2

2𝑣ℎ
2

- Most unstable waves 𝝎 ≤ 𝟎. 𝟏𝝎𝒄𝒆; frequency decreases
as the drift velocity𝒖𝒄 increases.

- typical wavelength ~15 Τ𝑐 𝜔𝑝𝑒

- linear growth rates 𝜸𝑳 ≤ 𝟎. 𝟎𝟏𝟓𝝎𝒄𝒆
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𝐵𝑤 𝑡 = < 𝐵⊥
2(𝑡, 𝑥) >𝑥

- TRISTAN-MP code (Spitkovsky, ApJ, 2008)
1D code (only parallel whistler waves)
𝑑𝑥 = 0.2 𝑐/𝜔𝑝𝑒;  𝑑𝑡 = 0.09 1/𝜔𝑝𝑒

𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 ≈ 5.2 ⋅ 108

- development of whistler wave below 0.1 ωce

propagating parallel to the electron heat flux

- the frequencies and initial growth rate are 
consistent with the linear theory 

- whistler waves saturate after a thousand of 
1/ ωce at averaged (over the box) amplitudes 
𝑩𝒘/𝑩𝟎~𝟎. 𝟎𝟑 [consistent with spacecraft 
observations, Tong+, APJL, 2019]

Results of the simulations𝛽𝑐 = 1, 𝑢𝑐 = −9𝑣𝐴
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1st set of simulations

- βc=1 and various uc/vA or, equivalently, qe/q0

- whistler waves saturated at averaged
amplitudes

2nd set of simulations
- 𝑞𝑒/𝑞0= 0.45, various βc

- whistler waves saturated at averaged
amplitudes

Τ𝐵𝑤 𝐵0~0.02 − 0.04

Τ𝐵𝑤 𝐵0~0.01 − 0.05
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Τ𝑞𝑒 𝑞0

Saturated amplitude vs. initial heat flux
Simulations

Observations, solar wind

𝑻𝒐𝒏𝒈 𝒆𝒕 𝒂𝒍 𝟐𝟎𝟏𝟗 ,𝑨𝑷𝑱

𝐵𝑤/𝐵0~(𝛾/𝜔𝑐𝑒)
𝛼, 𝛼 ≈ 0.7

m
ax

𝐵
𝑤
/𝐵
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1st set of simulations
βc=1 and various uc/vA or, equivalently, 𝑞𝑒/𝑞0

Heat flux variation is less than 1%

𝑞𝑒/𝑞0 = 0.45, various βc

Heat flux variation is less than 3%

Does the heat flux change?
2st set of simulations
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Effects of anisotropy on WHFI

𝐹𝑒 =
𝑛𝑐

2𝜋𝑣𝑐
2 3/2

exp −
Ԧ𝑣 − 𝑢𝑐

2

2𝑣𝑐
2 +

𝑛ℎ

2𝜋𝑣ℎ
2 3/2𝐴

exp −
𝑣∥ − 𝑢ℎ
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2𝑣ℎ
2 −

𝑣⊥
2

2𝑣ℎ
2𝐴



15𝐵𝑤 𝑡 = < 𝐵⊥
2(𝑡, 𝑥) >𝑥

Results of the simulations

𝛽𝑐 = 1, 𝑛𝑐 = 0.85, 𝑢𝑐 = −3𝑣𝐴, 𝐴 = 1.3, 𝑣ℎ
2/𝑣𝑐

2= 6
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Saturated amplitude
(b)(a)
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𝐴 = 1.3, various uc/vA or, equivalently, 𝑞𝑒/𝑞0

Heat flux variation decreases with𝒖𝒄 (𝜸𝒂𝒏𝒕𝒊 ↓)

𝑢𝑐/𝑣𝐴= −6 and different
anisotropies ( 𝜸𝒂𝒏𝒕𝒊 increases
with A)

Does anisotropy help with the heat flux?



Summary

• We have successfully simulated the generation of whistler waves driven
by the whistler heat flux instability combined with anisotropy instability.

• The amplitudes and frequencies of the generated waves are in agreement
with the observations of whistler waves in the solar wind.

• For small heat flux, the wave amplitude is positively correlated with the
heat flux. For larger heat flux, the correlation becomes negative. This is
consistent with the observations.

• We have found a positive correlation between linear increment and
saturated wave amplitude.

• Our calculations suggest that parallel whistler-mode waves cannot control
the electron heat flux in the solar wind, but anti-parallel waves generated
via combined heat flux + anisotropy instability can contribute to the heat
flux regulation.
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Thank you!
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Fastest growing whistler wave at various (𝜷𝒄, 𝒖𝒄/𝒗𝑨)
- core+halo electron VDF

- core density 0.85 n0, Th/Tc=10 or 4

- halo ten times hotter than core in simulations (a
bit higher than in reality)

- squares indicate initial conditions for simulations

- two sets of simulations:

1st: βc=1 and various uc/vA or, equivalently, qe/q0

2nd: qe/q0~0.45 and various βc

Ԧ𝑞𝑒 = න Ԧ𝑣 − Ԧ𝑣 Ԧ𝑣 − Ԧ𝑣 2𝑓( Ԧ𝑣) 𝑑3𝑣 𝑞0 =
3

2
𝑛𝑒𝑇𝑒 2𝑇𝑒/𝑚𝑒



What leads to the instability saturation?
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𝐻 =
Ԧ𝑝2

2𝑚𝑒
+ 𝐴𝑒𝑓𝑓 sin 𝑘𝑥 + 𝜙𝑔 −𝜔𝑡

𝑑

𝑑𝑡
𝑘𝑥 + 𝜙𝑔 − 𝜔𝑡 = 0 𝑣𝑅 =

𝜔 −𝜔𝑐

𝑘

- electrons in the first normal cyclotron resonance 𝑣 ≈ 𝑣𝑅 provide energy for the whistler wave growth

- the scattering of resonant electrons by the growing whistler waves leads to formation of the
plateau, resulting in saturation of the wave growth


