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On November 18, 2015 MMS observed an extended interval with southward Bz (02:14:00-02:59:46 UT). This period was
chosen by the GEM “Dayside Kinetic Processes in Global Solar Wind-Magnetosphere Interaction" focus group to examine
different aspects of the SW interaction with Earth's magnetosphere under negative Bz. The horizontal blue segments on top
of the panels indicate periods with burst mode data. During the shown interval the magnetosheath plasma is clearly not
homogeneous with interesting microstructure which includes well defined transients and waves.

We identify three magnetosheath jets (J1, J2, and J3) and various intervals with mirror mode waves (M1 to M5). Jets were
identified using the criteria of Archer & Horbury (2013), which states that the dynamic pressure inside the jets has to reach
values of at least twice the background dynamic pressure. Due to the limited time interval that the MMS spacecraft spent
on this occasion in the magnetosheath, we average the P, , over 2.5 minutes instead of the 20 minutes. The horizontal line
in Fig. 2d and 3d indicates the value of 2< P >.
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* J1 and J2 are different from J3. Their duration in the data is 54 s and 70 s, respectively. Through them the speed
increases more than 100 km/s, mostly due to enhanced Vz . In contrast, J3 lasts 6 minutes and the velocity increment is
50 km/s, with almost no change in the plasma flow direction.

*J1 and J2 show temperature enhancements within them, while the total temperature drops in J3 as can be observed in
Figure 1f. These differences in jet characteristics suggest that J1 and J2 share a common origin, which seems to be
different from the origin of J3.

*lt is possible to see that the interjet regions are permeated by compressive waves which show an anti-correlation
between B and N. The shape of these waves is variable, with larger periods observed between J1 and J2, and shorter ones
just before J3. The waves between J1 and J2 also show superposed higher frequency small amplitude fluctuations.
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*The top panels show B -feld spectra inside J1, J2 and J3. The bottom panels are for the inter-jet mirror mode intervals
M1, M3 and M4.

*Inside the jets the transverse component is the dominant one, however the fluctuations also have a strong compressive
component. In contrast, the waves in the inter-jet regions clearly contain more compressive power at low frequencies, f <
101 Hz. For the waves observed during 02:26:00-02:28:00 (panel 4d), there is also a peak in transverse power
corresponding to very small amplitude waves that can be seen in Figure 2.

*To strengthen our argument in favour of mirror mode waves, we use minimun variance analysis and apply the criteria of
Genot et al. (2001). According to these authors, mirror mode waves should satisfy A, >> A, and 8;,,< 20, where A,
Ai., and 6,,, are the maximum and intermediate eigenvalues, and the angle between the ambient magnetic field and
the maximum direction of fluctuation, respectively. Mirror mode waves are linearly polarized when A, /A, ., <0.2, and
Ain/Ae 2 0.3. If the last two criteria are not satisfied, mirror-mode waves are considered to be elliptically polarized. All

mirror mode waves identified in this study show elliptical polarization.



lon distributions, J1 and J2 region

*The VDFs in the interjet regions
(02:18:24, 02:29:34, 02:34:54)
are bi-Maxwellian witha T, >
T.r » typical of the Qperp
magnetosheath. In contrast, the
VDFs inside J1 and J2 show two
populations, with the secondary
(less dense) beam drifting along
B.

*The temperature inside J1 and
J2 increases. These properties
and distributions are very
different from those reported in
the past (Shue et al., 2009;
Archer et al., 2012; Archer &
Horbury, 2013; Plaschke et al.,
2013; Karlsson et al., 2018)
whose jets usually exhibit
diminished temperature, and
exhibit only one ion population.
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Ion distributions associated with J1, J2 and their surrounding regions. Distributions
are given for three planes, where V1, V9, and V) indicate directions perpendicular and parallel

to the B-field.
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Figure 6. Ion distributions associated with J3 and their surrounding regions. In the same format

as Figure 5

The ion distribution at 02:52:39 UT is associated with mirror mode waves and exhibits T.,> T ,.. The
ion distribution observed at 02:55:48 UT is not associated with mirror mode waves, and is less
anisotropic (see also Fig 3e).

Two of the ion distributions inside the jet are isotropic (at 02:57:36 UT, 03:00:32 UT), while the VDF at
the rear part of the jet at 03:02:42 UT shows anisotropic ion VDF.

At the times of the first two VDFs inside J3 there are clear B-field fluctuations (see Fig. 3a) which are
mostly transverse but also contain a strong compressive component and their frequencies range is
between 0.05-0.10 Hz (see also Figure 4c). At the rear part of J3 there are no such fluctuations.

The VDF in the post-J3 region resembles those in the pre-J3 region.



Various features of J1 and J2, such as
their enhanced and dominantV,,
and the ion distributions observed
inside them suggest that they could
have been produced by magnetic
reconnection.

In contrast, the origin of J3 seems to
be related to a magnetic field
rotation crossing the bow shock.

Electron pitch angle distributions
inside the jets support the fact that
J1 and J2 share a common origin
distinct to J3.
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Figure 7. a)electric field components, b) electric current calculated with the curlometer method
(Robert et al., 1998), c) and d) suprathermal electron pitch angle distributions which are normalized

on panel c).



Conclusions

*Jets and mirror mode waves can coexist in the dayside magnetosheath.

*We have shown that a variety of plasma structures can be identified as jets using statistical identification
criteria. However, the structures can be very different between them which suggests different generation
mechanisms.

*The temperature increased inside J1 and J2 which is in contrast to reported examples (Karlsson et al.,
2018), where the decrement in temperature has been explained in terms of plasma that has been less
processed than in their surroundings. J3 has a total temperature slightly above the background value.

*Waves inside and outside of the jets were different, inside the jets waves are mainly transverse and
propagate off angle. It is possible that inside J3 the waves arise from a combination of modes, as C; > 1,
The inter-jet regions showed the existence of mirror mode waves, and no ion cyclotron waves were
identified. Because mirror mode waves are compressive structures, it is possible that their arrival to the
magnetopause in combination with the jet arrival can have an impact on the magnetopause.

*We found clear differences on VDF's in/out side jets. In the interjet regions the VDF's are anisotropic with
Tperp/Tpar > 1. In contrast, J1 and J2 show values close to 1 and even below 1. J3 shows more isotropic

distributions, which could result from wave interaction.

*The charactristics of J1 and J2 suggest that they were produced by magnetic reconnection. The origin of
J3 is explained in terms of a field rotation discontinuity crossing the bow shock.

*It remains as part of future work to study wave-particle interaction inside magnetosheath jets.
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