Tropopause

Airborne ammonia measurements with a fibercoupled quantum cascade laser

Hongming Yi, Lei Tao, Da Pan, Xuehui Guo, James McSpiritt, and Mark A. Zondlo Dept. of Civil and Environmental Engineering Princeton University

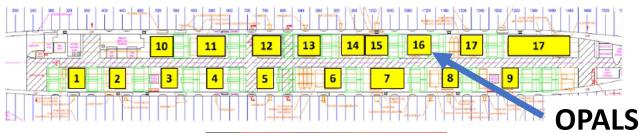
Da Pan, Hongming Yi, Lei Tao, Xuehui Guo, James McSpiritt

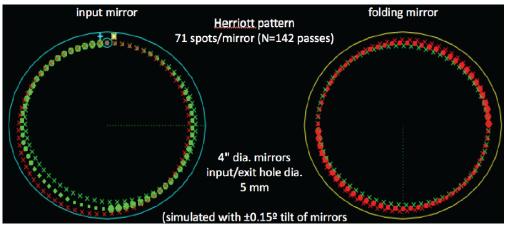
European Geophysical Union meeting

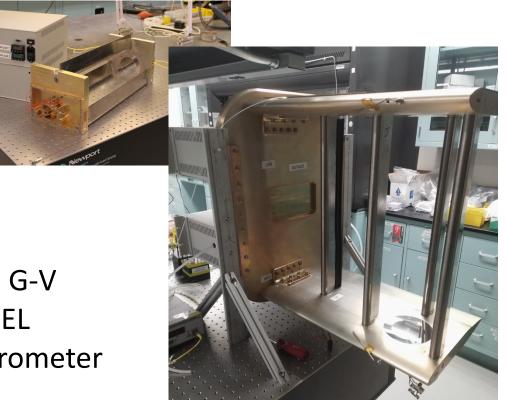
May 5, 2020

Virtual presentation

http://www.ssec.wsic.edu/news/articles/4152



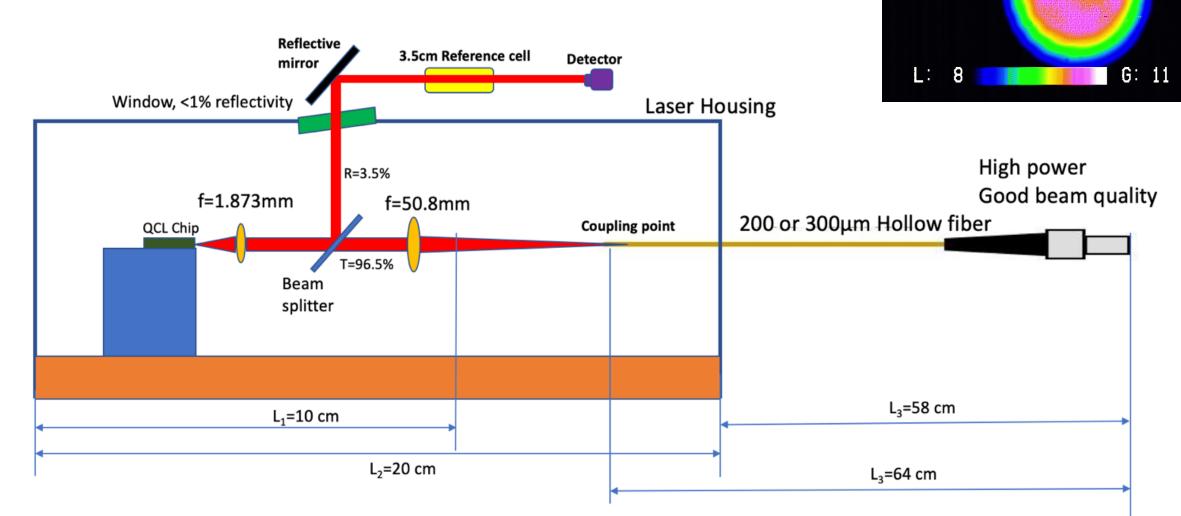

Airborne-based ammonia instrument attributes


Airborne-based ammonia		
Measurement requirements	Design attributes	
Fast-response	Open-path configuration	
	(minimizes adsorption/desorption)	
Accurate measurements	Open-path configuration (minimizes adsorption/desorption biases)	
High sensitivity	50 m optical path; mid-IR laser at 9 μ m	<u>Beer-Lamber Law:</u>
Laser temperature stability	Fiberized laser	$\frac{I(\lambda)}{I_{o}(\lambda)} = \exp(-\alpha(\lambda))$
	(laser inside cabin, light outside via fiber)	$\alpha(\lambda) = S(T) g(\lambda, T, P) N I$
Optical cell stability over 220-310 K	Invar struts between optical cell mirrors	where:
Mirror degradation / alignment	Replaceable optical cell from outside, can be	S(T) is the linestrength $g(\lambda,T,P)$ is the normalized Voigt lineshape function
	pre-aligned with fiber optic	N is the absolute concentration
Mirror icing / condensation	Mirrors heated slightly above ambient	l is the pathlength
Cloud particles	Shadow zone of larger particles	NIL
		1 0x10 ³
Plane boundary layer artifacts	Mirrors 15" above fuselage	0.8 – 1 poby NH.
Optical fringing/feedback from fiber	Hollow core fiber (200 μ m dia.) vs. solid core	0.6 – 375 ppmv CO ₂ — 30 ppbv O ₃ — 320 ppbv N ₂ O
Interstitial NH ₃ inside fiber/cabin	Purge/closed N ₂ flow through fiber	0.4 -
Ease-of-installation	Sensor attached to modified viewport plate	0.0 8800 9000 9200 9400 wavelength (nm)

Instrumentation: Open-Path Ammonia Laser Spectrometer (OPALS)

- open-path avoids adsorption hystereses, phase partitioning
- fast (1 Hz), sensitive (60 pptv Hz^{-0.5}), \pm (20% + 0.1 ppbv) accuracy
- wavelength modulation spectroscopy
- Herriott cell w/ 4.5" Al mirrors
- builds upon QCL-based tower/mobile-lab NH₃ sensors and openpath VCSEL hygrometer for NSF G-V
- reference cell for linelocking during icing/hydrometeors

Zondlo et al., JGR-A, 2011 Miller et al., AMT, 2014 Sun et al., Appl. Phys. B, 2013 Tao et al., Appl. Phys. B, 2015 Sun et al., Ag. For. Met., 2015 Sun et al., ES&T, 2017



NSF G-V **VCSEL** hygrometer

Optical configuration

- 9.06 μ m continuous wave, DFB quantum cascade laser (Adtech)
- hollow core 200 μ m dia. fiber
- separate linelocking reference cell (ethylene, ammonia at 100 Torr)

System performance: Allan plot

• deployment conditions on a tower at Duke Forest

- relatively low NH₃ conditions (~ 1 ppbv)
- some of the drift/noise real atmospheric signal (upper limit to instrument noise/drift)
- precision: 150 pptv at 10 Hz, 60 pptv at 1 Hz
- consistent with laboratory (though hard to get a precise and calibrated 1 ppbv NH_3 in the lab)

Allan deviation $\sigma_y(\tau)$ (ppbv)

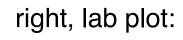
10⁻²

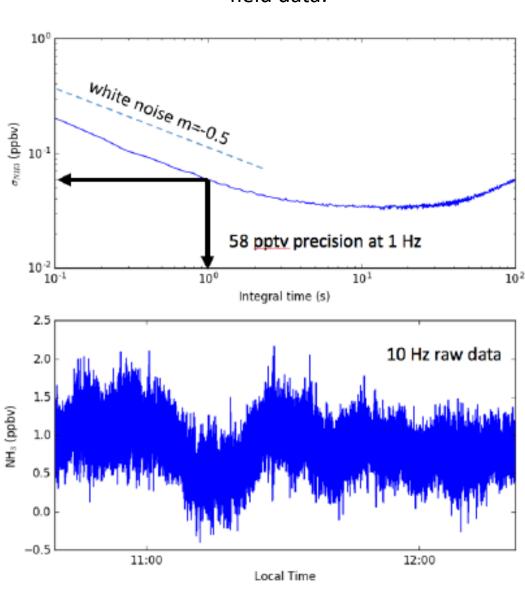
10⁻¹

10⁰

 $\sigma_{v}(\tau) =$

Averaging time τ (s)

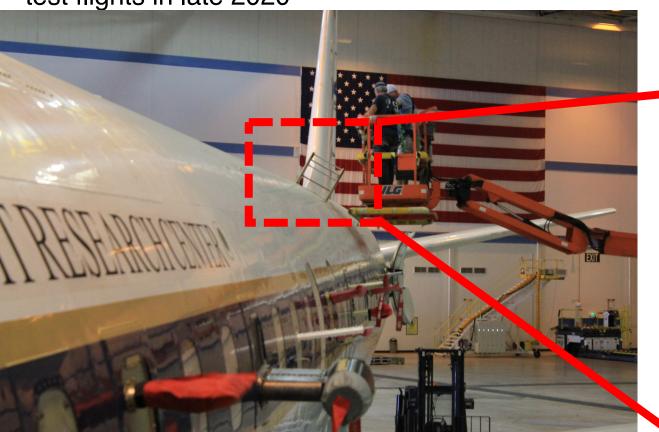

 $(\Delta y)^2$


10¹

 10^{2}

0.17 ppbv

Allan Deviation



field data:

OPALS on the NASA DC-8 aircraft OPALS = Open-Path Ammonia Laser Spectrometer

- completely self-contained on window viewport plate
- uninterrupted power supply, laptop for viewing at rack
- test flights in late 2020

