
•  The	mantle	transi-on	zone	(MTZ),	bounded	by	410	and	660	discon-nui-es,	is	a	key	
region	to	understand	the	thermal,	chemical,	and	dynamical	evolu-on	of	the	mantle.		

•  Mantle	dynamics	is	primarily	thermally	driven	and	the	topography	of	410	and	660	has	
been	widely	used	to	infer	the	temperature	of	the	MTZ.	However,	in	a	number	of	
recent	studies	we	have	found	that	proper-es	of	transi-on-zone	discon-nui-es	may	
also	provide	insight	in	the	distribu-on	of	composi-onal	heterogeneity.	
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•  Comparison	of	P660P	amplitude-distance	trends	with	thermodynamic	models	suggests	
that	on	a	global	scale,	amplitude	trends	of	SS	and	PP	precursors	from	both	410	and	660	
are	consistent	with	predic-ons	from	a	pyroli1c	mantle	transi1on	zone		

•  Global	varia1on	in	MTZ	thickness	has	a	posi-ve	correla-on	with	velocity	anomalies	
within	the	MTZ,	consistent	with	a	control	by	variable	transi1on	zone	temperatures.		

•  In	an	applica-on	of	this	method	to	data	from	Hawaii,	we	however	found	evidence	of	
composi1onal	varia1ons,	consistent	with	the	analysis	of	tomographic	images	below	a	
few	other	hotspots		

•  Further	composi1onal	heterogeneity	linked	to	recent	subduc1on	has	been	found	from	
a	receiver-func-on	study	below	the	US		

•  Results	thus	indicate	a	quite	well	mixed	background	mantle	with	more	heterogeneity	
in	areas	of	recent	up-and	downwelling.		
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Regional	Evidence	for	Heterogeneity	

Longitudinal	cross	sec-on	through	P-to-S	receiver-func1on	CCP	volume	below	the	US.	
Background	tomography	from	Schmandt	and	Lin	(2014).	Regional	high-amplitude	
discon-nui-es	around	520	and	730	km	depth	could	be	due	to	enhanced	hydra1on	and	
concentra-ons	of	basal1c	material,	respec-vely.	Both	signatures	might	be	a	record	of	
recent	Farallon	subduc-on		(Maguire	et	al.,	2018).		
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dTS410S-S660S 
deviations from  

ak135	

S40RTS	

Systema-c	varia-ons	of	
discon-nuity	strengths	
and	depths	are	
expected	as	a	func-on	
of	composi-on	
(expressed	as	the	
frac-on	of	basalt,	f,	in	a	
mechanical	mixture	of	
basalt	and	harzburgite	
in	A,B)	and	temperature	
(expressed	as	poten-al	
temperature	of	mantle	
adiabats,	C,D)	(from	
Maguire	et	al.,	2018)	
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Global	trends	of	SdS/SS	
and	PdP/PP	amplitude	
ra-os	are	consistent	
with	predic-ons	from	a	
pyroli1c	mantle	
transi1on	zone.	
Effects	of	geometrical	
spreading,	aZenua-on	
and	incoherent	stacking	
are	not	considered	in	
these	calcula-ons.	The	
results	can	not	
dis-nguish	between	
cooler	(1300°C)	or	
hoZer	(1400°C)	
poten-al	mantle	
temperature	

travel	1me	difference	
across	the	MTZ	(aier	
moveout	correc-on	to	
130°)	is	posi-vely	
correlated	with	velocity	
anomalies	within	the	
MTZ	(from	S40RTS,	
Ritsema	et	al.,	2011).	
Both	of	them	are	likely	
controlled	by	thermal	
anomalies.	
Mean:	dT	=	-0.7s	
(rela-ve	to	ak135)	=>	
MTZ	thickness	=	248	km	
=>	~1350oC	adiabat	
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	C		

S660S/SS	amplitude	ra-os	from	curvelet	filtering,	
aier	correc-on	for	geometric	spreading,	intrinsic	
aZenua-on	and	incoherent	stacking	for	two	
regions	with	high	data	density,	NW	(A)	and		SE	(b)	
of	Hawaii.	Red	curves	shows	how	predicted	
reflec-on	coefficients	for	our	best	fiqng	models	
are	clearly	different	for	the	two	regions.	
Comparison	with	corresponding	density	and	
velocity	jumps	around	660	km	from	models	as	in	
Fig.	1	are	shown	in	panel	C	(Yu	et	al.	2018)	

EGU2020-11819	-	invited	
	

300

400

500

600

700

800

900

de
pt

h 
(k

m
)

4.5 5.0 5.5 6.0 6.5
VS (km/s)

300

400

500

600

700

800

900

de
pt

h 
(k

m
)

4.5 5.0 5.5 6.0 6.5
VS (km/s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

f

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
P730s/P660s

1000

1200

1400

1600

1800

2000

te
m

pe
ra

tu
re

 (K
)

200 220 240 260 280 300 320
MTZ thickness (km)

A C

B D

f = 0.0
f = 0.2
f = 0.4
f = 0.6
f = 0.8
f = 1.0

TPOT =  1300 K f = 0.2co st

ol wa

wa ri

ri br + fp

gt br

TPOT =  1300 K

TPOT = 1000 K
TPOT = 1200 K
TPOT = 1400 K
TPOT = 1600 K
TPOT = 1800 K
TPOT = 2000 K

©Authors	–	all	rights	reserved		

longitude (°)


