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+ City with recurrent flooding cases;

* The city has official risk areas mapped but flood cases are also seen in many other locations;

Goal:

* To build a historical flooding map for Campina Grande-Brazil with a GlIS-collaborative
approach;
* To identify trends of flood cases, over time, by applying techniques of spatial analysis.
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Fig. 2: Historical flood map framework




172 surveys with residents

1. Place-based citizen science project fi#f 27 policymakers and specialists
The “Planejeee Project”: To Plan Extreme Events Collaboration platforms: in person surveys
Collection of data with the assistance of stakeholders and workshop, informal meetings,
May-June of 2019 - Campina Grande, Brazil website, online survey and social media

Mixed-source information data:

Flooding complaints | Flooding reports | News and Social Media
Mixed flooding-scale data:

Buildings | Streets | Neighbourhood

2. Managing uncertainties:

2.1 Conceptual analysis for data mapping:

Assumptions:
(1) and (2): Most flooding cases occur in a part of a
street (not in the entire street) - same rule was
applied for neighbourhood-scale data;
N1 (3): It is unusual that only one building has flooding
in a street/neighbourhood,;
(4) When it is not possible to find the correct part of
the street to map, the data will be discarded.

N2

Fig. 3: Conceptual analysis
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Fig. 6: a) Steps for data mapping; b) Steps for data verification




4. Spatial data analysis:

Fig. 7: Historical flood map (2004-2020) and residents interviewed
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4.1 Spatial analysis aggregation:
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Fig. 9: a) Catchment aggregation; b) 100mx100m fishnet aggregation
4.2 Conceptualisation:

Outliers: Locations very different from their surroundings;
Clusters: Locations with the same attribute as their
surroundings;

Multiple types: Locations where has been multiple types of
statistically significant clusters and outliers throughout the
time.

(i) Each flooding case represent the attribute 1 in a
year (from 2004 to 2020);

(i) Each aggregation unit/catchment has a unique
spatiotemporal extent (from 2004 to 2020);

(i) Flood occurrence is analysed in different years in
order to statistically find clusters and outliers.

Fig. 10: Scheme for cluster and outlier analysis
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4.3 Results:

Analysis (a):

Most catchments present a high-high cluster, what
indicates they are statistically significant locations
with flood cases surrounded mainly with other high-

high catchments.

Analysis (b):

The approach identified several locations with high
clusters, outliers and multiple types far from the
official risk areas of the city; this indicates key areas
for the flood management of the city; and a need for
updating the current risk areas mapping.

Fig. 12: Number of clusters and outliers for fishnet aggregation

Fig. 11: Clusters and outliers catchments
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5. Conclusions
and next steps:

GlIS-Collaborative approaches have a positive impact in water management, including obtaining data,

understanding better the current context and identifying trends over time;
Clusters and outliers will be further analysed with physical and social variables, such as elevation, slope,

income and imperviousness, to understand other influences in floods.




