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Motivation

There exists a coupling mechanism between the troposphere and the stratosphere,
which plays a fundamental role in weather and climate. The coupling is highly complex
and rests upon radiative and chemical feedbacks, as well as dynamical coupling by
Rossby waves:

I The troposphere acts as a source of Rossby waves which propagate upwards in to the
stratosphere, affecting the zonal mean flow.

I Rossby waves are also likely to play a significant role in downward communication of
information. This happens via downward reflection from the stratosphere in to the
troposphere.

I Shaw and Perlwitz (2013) analysed the two-way coupling via wave reflection and
quantified the impact of the downward wave coupling mechanism on the troposphere,
suggesting that wave reflection can directly influence tropospheric weather.

I A shear flow exhibits a so-called critical layer, where viscous and nonlinear effects become
important.

I A wave incident upon a critical layer may be absorbed, reflected or overreflected, whereby
the amplitude of the reflected wave is larger than that of the incident wave. The concept
of critical layer overreflection is key to understanding atmospheric instability.

The ultimate aim is to prove a self-consistent mathematical framework on this coupling.

Formulation

I A shear flow U(y) is considered, and small perturbations imposed. The total flow field can
be expressed as:

ψ =

∫
U dy + εψ̃(x , y , t).

I In the main part of the shear flow, viscosity and nonlinear effects are negligible when
Re � 1 and ε� 1. This is considered to be the ’Outer Region’.

I The streamfunction is sought as a superposition of normal modes

ψ̃ = <
{ ∞∑

n=1

ψ̂(n)(y)e in(αx−ωt)

}
,

and the governing equation is the Rayleigh-Kuo equation

(U − c)

(
d 2ψ̂(n)

dy 2
− n2α2ψ̂(n)

)
+

(
β − d 2U

dy 2

)
ψ̂(n) = 0.

I This exhibits a singularity where U = c at y = yc, referred to as the critical line. The
solutions to the Rayleigh-Kuo equation close to the singularity are the Tollmien (1929)
solutions, φ1 and φ2:

ψ̂(n)(y) = A
(n)
± φ̂

(n)
1 (yc ± δ) + B (n)φ̂

(n)
2 (yc ± δ).

I This suggests the existence of a critical layer close to y = yc, where extra effects such as
viscosity and/or nonlinearity must be introduced. Different expansions must then be
constructed and a different solution sought, known as the inner solution.

I Traditionally, only the fundamental harmonics (n = 1) has been considered, under the
assumption that the effect of the higher harmonics is negligible. However, it has been
shown that this is not the case, and nonlinearly generated harmonics spread out to the
entire shear flow.

I The parameter λ can be introduced as

λ =
1

Re
ε−

3
2.

λ describes the relative importance of nonlinearity against viscosity in the critical layer. As
λ→ 0, nonlinearity dominates in the critical layer, and as λ→∞, viscosity dominates in
the critical layer.
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Jump Across The Critical Layer

Jump conditions can be derived across the critical layer. In particular, for the
fundamental harmonic n = 1, the jump condition is:

J1 =
U ′c

2(U ′′c − β)B (1)
(A

(1)
+ − A

(1)
− ).

J1 varies monotonically between 0 and π/2 depending on whether nonlinearity or
viscosity dominates. When harmonics are considered within the critical layer but
assumed to be negligible in the outer region, the following results are obtained:

(a) (b)

(c) (d)

Figure: Jump across critical layer for (a) fundamental harmonic, J1, (b) second harmonic, J2,

(c) third harmonic, J3 and (d) fourth harmonic, J4.

This is significant: it implies that the higher harmonics spread out to the entire shear
flow. In previous analyses they had been ignored because their effect was assumed to be
small, and so a reformulation of classical problems is needed.

Reflection of Rossby Waves

I The reflection of Rossby waves by a rotating zonal shear layer was investigated in terms of
a viscous critical layer in the stratosphere.

I Observational evidence for these critical surfaces have been demonstrated by Perlwitz &
Harnik (2003, 2004) and Song & Robinson (2004).

I A special case of wave overreflection is “resonant overreflection”, where the shear layer
appears to spontaneously emit an outgoing wave without the presence of an incident wave.
This corresponds to an infinite reflection coefficient, and appropriate physical constraints
must be considered and introduced in order to regularise the problem.

I Numerical evidence has been found of resonant overreflection for the velocity profile
U(y) = tanh(y) on an infinite domain. For β = 0.1, an infinite reflection coefficient is
found at (α, c) = (0.2465488,−0.6216327). This corresponds to the so-called resonant
over-reflection, and but it also signifies the existence of a radiating Rossby wave.

(a) Visualisation of ψ̂, where the upper far-field

condition is that of a transmitted and reflected wave,

and the lower far-field condition is that of exponential

decay.

(b) A contour plot of 1/|R | against c and α for

β = 0.1. The root is found at

(α, c) = (0.2465488,−0.6216327).

Further work:
I Only a viscous critical layer has been studied - an investigation of the effects of

nonlinearity is required in order to determine the full-effects of the higher harmonics.

I So far only an idealistic velocity profile has been considered - ultimately, we will consider a
much more realistic profile, seen in a baroclinic setting.

I The physical constraints of resonant overreflection need to be considered, and the problem
must be regularised to establish a relationship between the incident and reflected waves.
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