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The NASA ATom mission: %,

of Coloradd]

Profiling the remote atmosphere from 0-13 km (~600x)

Motivation of this study:

* Evaluate the consistency of publicly
available aerosol measurements suite
for ATom:

https://daac.ornl.gov/ATom

since this data will be widely used to
evaluate and constrain global models.

* |s our current understanding of the
uncertainties of the Aerodyne Mass
Spectrometer (AMS) consistent with
ATom performance?

ATom-1 (8/16)
ATom-2 (2/17)
ATom-3(9/17)

ATom-4 (5/18)

See EGU2020-6155 (AS3.4; May 6t) for
science results!

The paper to be submitted to AMT soon.

Speaker’s notes for EGU audience:
* The title of paper to be submitted: Evaluating the Consistency of Submicron Aerosol Volume Derived from Sizing vs.

Composition measurements during the Atmospheric Tomography Mission (ATom)



ATom in-cabin aerosol payload: Physical & chemical sensors
Boulder
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Speaker’s notes for EGU audience:
. Each instrument has its own observable particle size range, making the direct intercomparisons not feasible in some
cases.
. Thus, instrument inlet transmission needs to be characterized for meaningful comparisons.
. Based on this plot, AMS size range is roughly comparable to SAGA MC.
. 0,552 TEfers to the aerodynamic diameter at sea level pressure (1013 hpa), since d,, is pressure dependent.

. NMASS, UHSAS, and LAS comprise the NOAA AMP package.

The list of abbreviations:

NMASS: Nucleation-Mode Aerosol Size Spectrometer

UHSAS: Ultra-High Sensitivity Aerosol Spectrometer

LAS: Laser Aerosol Spectrometer

AMP: Aerosol Microphysical Properties

AMS: Aerosol Mass Spectrometer

SP2: Single Particle Soot Photometer (measured BC)

SAGA filter: Soluble Acidic Gases and Aerosol (SAGA) filter
SAGA MC: SAGA Mist chamber coupled with ion chromatograph
PALSM: Particle Analysis by Laser Mass Spectrometer




What is PM, and the fraction that AMS observes? @T
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Speaker’s notes for EGU audience:

+ Both the AMS and the NOAA AMP size distributions measure dry particles while the ground URG PM, cyclones are
normally operated under ambient humidity. To account for the difference, the URG transmission is applied to the
estimated ambient particle size before losing liquid water content.

» Regarding the submicron mass quantification using AMS, the large particle transmission (upper side) is far more relevant
for consistent comparisons than the small particle transmission (lower side), as shown by the bottom panel.

* Vs AMP total volume; V,, . - AMP total volume corrected with AMS transmission;



What particle fractions are detectable by AMS?
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Right: Number
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AMS observes 68% (74% median) of AMP volume, 41% (40% median) of number;

Importantly, AMS covers 83-90% of the standard PM, volume for ATom conditions;

Geometric diameter

GO

Speaker’s notes for EGU audience:

+ Theright panels show the number of particles in the observable size range for AMS and do not necessarily indicate that
AMS detects all these particles. Instead, the chemical speciated info quantified by AMS represents the bulk properties of

these particles.

» The size ranges quantified by other instruments are also discussed in the paper. These plots and numbers are important
when evaluating global models with the ATom aerosol payload, because different particle size ranges are defined and

used by global models.




A good transmission curve allows meaningful comparisons
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Good agreement between AMP (V,, ) and AMS+BC (V,,,,) volumes

[w] epnyy

Speaker’s notes for EGU audience:
In the last two slides, we show how much AMP volume is captured by AMS. Here, we show an example from a research

flight in ATom-2 for volume closure to evaluate the AMS transmission.
The OA density (p,,) is estimated with the AMS measured O/C and H/C atomic ratios of OA using the parameterization of

Kuwata et al. (2012).

Two correlations coefficients (r2) are listed: one at linear scale (commonly used) and the other at logarithmic scale,

which emphasizes the scatter at low concentrations.
AMP total volume; V. 7= AMP total volume corrected with AMS transmission;

Vph ys:



Volume comparison: AMS+BC volume and particle sizers agree well 3.
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Consistent agreement for ATom deployments!
7
ATom-3 and -4 are similar and not shown here. ) ®

Speaker’s notes for EGU audience:
» Two correlations coefficients (r2) are listed: one at linear scale (commonly used) and the other at logarithmic scale,
which emphasizes the scatter at low concentrations.

* Vs 76 AMP total volume corrected with AMS transmission; V., AMS calculated bulk volume plus BC volume.
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Measurements are consistent within the stated uncertainties
of Coloraci
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Longer averaging time interval smooths out random noise (prominent in ATom due to the clean remote air)
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Speaker’s notes for EGU audience:
ATom-1 and -2 sampled remote particles (clean) with low concentrations, 0.50 and 0.38 ug m-3, making the 1 min data
suffering from random noises. Longer averaging time can deemphasize these precision errors, especially for a dataset
like ATom with few sharp plumes. Thus we plot the volume ratio at three time scales, 1 min, 5 min, and 10 min. It shows a
clear improvement in the spread of the ratio as the averaging time scale increases, with the 10 min data being consistent
with the reported uncertainties. This supports the good quality and consistency of the ATom aerosol dataset, and it also
supports the reported AMS uncertainties.
nys,7c AMP total volume corrected with AMS transmission; V., AMS plus BC volume.

7
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OA, sulfate & sea salt are the major components of PM, in ATom =

Boulder

ATom PM; Average Composition
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See EGU2020-11366
(AS2.14; May 8th)
For related presentation
on global survey of
aerosol acidity

Speaker’s notes for

EGU audience:

« With a good confidence on the volume closure, in the next, we compare the three main submicron aerosol components:

organic aerosol

(OA), sulfate, and sea salt.

+ Sea salt is an important submicron aerosol component when sampling marine boundary layer in ATom.



Sulfate: Good agreement vs water-soluble lons and Single Particle MS @
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ATom-1: AMS vs. SAGA MC AMS vs. SAGA Filters ATom-1: AMS vs. PALMS (PM,)
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Resolution: 75 sec | Resolution: 5-20 min | Resolution: 3 min

From PALMS and AMS Data:
organosulfate is very low (~1%) SAGA MC, SAGA Filters, PALMS, and AMS sulfate agree well.

For SAGA MC: the tails and the correction made for them - extra noise

[©MO}
Speaker’s notes for EGU audience:
. Sulfate is virtually nonvolatile in troposphere (e.g., no evaporation bias as ammonium nitrate when collected via filters)
and a ubiquitous fine particle component, thus commonly used for instrument intercomparisons.
. Excluding the dust and rich supermicron particle events, AMS sulfate (PM,) agrees well with the SAGA filter sulfate
(PM,,)

. Since the PALMS composition data is derived by mapping particle composition/type to the NOAA size distributions,
the AMS transmission is applied to the PALMS mass product to allow an apple-to-apple comparison with AMS.

10
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Sulfate [ug sm's]

Sulfate: AMS vs. SAGA Mist Chamber (IC-based) @
1.6 —— SAGA-MC
i — AMS
—— AMS, simulated based on 60 min decay SAGA-MC vs AMS

Slope=1.10,r2=0.73

Slope =1.00, r2=0.81

T
10:00 AM
2/15/2017 uTC

|
12:30 PM 3:00 PM

o SAGA Mist Chamber has strong tailing due to the liquid sampling and analysis (carryover between samples)
o ATom sampling strategy (constantly up and down) requires adding fairly heavy tails to the AMS SO,, to
simulate the tailing of the SAGA-MC, leading to better agreement.

Speaker’s notes for EGU audience:

The simulation of the tailing in SAGA MC is supported by the good agreement between AMS and SAGA filter.

11
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OA: Good agreement between AMS and PALMS
Boulder
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PALMS data (Froyd et al., AMT, 2019) [@HO)

Speaker’s notes:

. Since the PALMS composition data is mapped to the NOAA size distributions, the AMS transmission is applied to the
PALMS mass product to allow an apple-to-apple comparison with AMS.

. The agreement between the two completely different methods of quantifying OA is convincing and exciting since OA
represents a large family of organic molecules with different physiochemical properties. This makes the OA mass
measurement inherently more uncertain than sulfate for instance.

12



PALMS composition coverage
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PALMS: — Relative data coverage
NOAA particle size spectrometers: ==« Volume size distribution
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Next, we calculate the small particle number fraction in Bin 1 (=X22=159"™) 5 investigate the potential bias.

(Froyd et al., AMT, 2019)

N1oo-240nm

13



Looking at the effect of small particles for AMS vs PALMS
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Speaker’s notes:
. The color gradients suggest the existence of heterogeneous aerosol composition within Bin 1 (100-240 nm).

14



Looking at the effect of small particles for AMS vs PALMS
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Extrapolating the composition from larger particles, which sometimes has more SO, and less OA

» PALMS will be biased when 100-150 nm particle composition # 150-250 nm particles 15

Speaker’s notes:

Fitting for high vs low 100-150 nm number fraction data shows clearly the potential bias when composition is not
homogeneous within a PALMS assigned particle bin.

Exclusion of those higher 100-150 nm number fraction points doesn’t affect linear regression slope and r2 for ATom-1

and slight change in ATom-2.

15



Submicron sea salt: Good agreement of AMS, PALMS and TD-UHSAS
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ATom-1: AMS vs PALMS ATom-2: AMS vs PALMS

ATom-2: AMS vs TD-UHSAS
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AMS seasalt: Method of Ovadnevaite et al., JGR 2012, calibrated in lab
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Speaker’s notes for EGU audience:
*  TD-UHSAS: thermally-denuded (300 °C) Ultra-High Sensitivity Aerosol Spectrometer (UHSAS)

«  Other than the sea salt agreement between AMS and PALMS, we also compare the AMS sea salt volume to TD-UHSAS

volume when there were low BC concentrations. Thus, sea salt is expected to be the main TD-UHSAS volume.

16



Summary
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i.  Physical and chemical measurements of submicron aerosols for the ATom mission are consistent
within uncertainties.
ii. Forthe AMS, reported uncertainties (20 accuracy: Sulfate: 35%, OA: 38%, Sea salt: 50%) seem
consistent with the comparisons.
iii.  Size transmissions and instrument idiosyncrasies need to be considered.
hongyu.guo@Colorado.edu Pedro.Campuzanolost-1@colorado.edu iose.iimenez@colorado.edu’7 MO
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