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OVERVIEW

Approach
Estimation of heat and moisture advection to ecoregions: using a Lagrangian trajectory model (FLEXPART), driven by ERA-Interim 
reanalysis data, we unravel the origins of heat and moisture. (p. 2)

Rationale & hypotheses
Ecosystem productivity crucially depends on local climate, (p. 3)
local climate depends on advection of heat and (precipitating) moisture,
consequently, ecosystem productivity is driven by heat and moisture advection. (p. 4)
Thus, ecosystem productivity extremes could be caused by anomalous advection of heat and moisture. (p. 5)

Results
For the 5 global ecoregions with strongest interannual GPP variability, all situated in transitional climate regimes, (p. 6) 
unusually low GPP is associated with anomalously high amounts of advected heat, yet below-average moisture. (p. 7) 

This anomalous advection is a consequence of both (p. 8)
a.) anomalous circulation patterns (generally, a shift from terrestrial toward oceanic source regions occurs),
b.) upwind surface-atmosphere feedbacks, in particular land-atmosphere feedbacks (drought conditions result in enhanced heat 
yet reduced moisture advection)

Conclusion
Our results underline
i. the susceptibility of ecosystems to upwind climatic extremes,  
ii. the role of land-atmosphere feedbacks in these upwind climatic extremes,
iii. the importance of the latter for the spatiotemporal propagation of ecosystem disturbances.
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ESTIMATION OF HEAT AND MOISTURE ADVECTION TO ECOREGIONS 
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In our approach, air parcels residing over ecoregions are followed back in time using a Lagrangian

trajectory model, FLEXPART v9.0 (Stohl et al., 2005).

- FLEXPART is driven by 6-hourly ERA-Interim data at 1.0x1.0° horizontal resolution ,

- In FLEXPART, the entire atmosphere is represented by 2 million air parcels around the globe, 

- Changes of potential temperature and specific humidity along parcel trajectories are used to 

infer the origins of heat* and moisture

* in our framework, only diabatic heat origins unrelated to phase changes are considered directly, i.e. surface heating.



ECOSYSTEM PRODUCTIVITY CRUCIALLY DEPENDS ON LOCAL CLIMATE
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Ecosystems’ optimum temperature (Huang et al., 2019) and a 

minimum (critical) level of soil moisture (Seneviratne et al., 

2010) for which productivity is maximized (Topt and SMcrit , 

respectively). 

As soon as Topt is exceeded, heat advection is expected to have 

adverse effects on productivity (heat-stressed types, I and II), 

whereas higher heat advection is favorable below Topt (energy-

limited types, III and IV). Similarly, if soils are below SMcrit , 

productivity is reduced (water-limited types, I and III). 

Note that this schematic is a simplification: it does not account 

for adverse effects of water-logging on productivity (Datta & De 

Jong, 2002), it illustrates the temperature optimality function as 

symmetric, and it depicts the soil moisture function as piecewise 

linear.

Schumacher et al. (in press) 



ECOSYSTEM PRODUCTIVITY IS DRIVEN BY HEAT AND MOISTURE ADVECTION
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Below: Spearman correlation coefficients between growing-season (FMA) GPP 

and local temperature T (strong relationships indicated by red), and between 

GPP and precipitation P (blue), based on 1980–2013.

GPP data obtained from FLUXCOM RS+METEO (Tramontana et al. 2016; Jung et al., 2019), T from CRUNCEP v7 (Viovy, 

2018), and P from MSWEP v1.1 (Beck et al., 2017).

GPP does not covary with advected heat, but more than half of GPP 

variance can be attributed to advected moisture (see barplot on the right).

This is in line with the correlations based on local climatic variables (T, P) 

shown above.

predominantly 

energy-limited ecoregion

Standardized anomalies in heat (H'adv) and moisture advection (E'adv(P)) and growing-
season GPP (GPP'obs). Red and blue bars to the right of the time series denote the
ensemble mean–explained variances of GPP'obs by H'adv and E'adv(P), respectively, 
whereas the black bar denotes the estimated GPP anomaly (GPP‘est) obtained using
the advection estimates of heat and moisture and a multiple linear regression.

predominantly water-limited ecoregion
Schumacher et al. (in press) 
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ECOSYSTEM PRODUCTIVITY EXTREMES COULD BE CAUSED BY ANOMALOUS HEAT AND MOISTURE ADVECTION

5Miralles et al., 2016 (modified)

As our atmosphere is flowing continuously, local conditions in ecoregions also depend on the history of advected air:

- Where did that air gain moisture in the past, and how much? 

- Did some of that moisture rain out en route prior to arriving? 

- Similarly, where and how much was the air heated by the land surface?

Considering this, and that generally, oceans supply large amounts of moisture to the atmosphere, whereas particularly dry land surfaces tend 

to heat rather than moisten the atmosphere, merely a shift in the circulation pattern from oceanic to continental could already result in 

anomalous advection of heat and moisture to ecoregions (see illustration below). 

Using our heat and moisture tracking framework (p. 2), we investigated this hypothesis for different ecoregions around the globe (p. 6).



5 GLOBAL ECOREGIONS WITH STRONGEST INTERANNUAL GPP VARIABILITY
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Global hotspots of interannual GPP variability, based on the 

maximum normalized* monthly standard deviation of GPP 

(1980–2013). 

(* by annual average GPP)

This enables the identification of a ‘peak month’ per pixel, 

during which interannual GPP variability is most pronounced.

The green contours mark the five ecoregions subject to strong 

normalized interannual GPP variability (> 0.25) and whose 

‘peak month’ agrees within ± 1 month. 

Schumacher et al. (in press) 



LOW GPP ASSOCIATED WITH HIGH AMOUNTS OF ADVECTED HEAT, YET BELOW-AVERAGE MOISTURE

Advected heat to the five ecoregions (white contours) during low-GPP 
years, expressed as anomalies for the respective peak month and the
two antecedent months. The peak months of NGP, SAH, MON, AUS & KAL 
are June, August, July; for AUS & KAL, it is February. 

Note that white pixels contribute as much during low-GPP years as they
do on average; anomalous contributions are indicated by blue and red 
colors. The climatological mean source regions are delineated using
black contours, such that 80% of the average advected heat is 
accounted for by the smallest possible selection of source pixels. 

Like the above, but for advected moisture.

Our results suggest that all 5 ecoregions, 
at least during their respective peak month, 
belong to type I on p. 2,
i.e. are heat-stressed and water-limited.

Unusually low GPP is thus associated with anomalously high (low) 
amounts of advected heat (moisture).
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ANOMALOUS ADVECTION CAUSED BY CIRCULATION & UPWIND SURFACE-ATMOSPHERE FEEDBACKS
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Wind and surface fluxes during low-GPP years
(A) Mean near-surface winds (ERA-Interim; Dee et al., 2010); colored
green (purple) indicate that mean wind speeds are higher (lower) 
than the climatology. Mean wind directions during low-GPP years do 
not strongly deviate from the overall climatology (not shown). 
(B) Surface sensible heat flux anomalies (GLEAM over land; Miralles
et al., 2011; Martens et al., 2017, OAFlux over oceans; Yu & Weller, 
2007). 
(C) Evaporation anomalies (same datasets used as for B)
(D) Precipitation anomalies (MSWEP; Beck et al., 2017). 

In all plots, ecoregions are indicated by dark (A) or white (B–D) 
contours; for panels B and C, climatologically advected heat and
moisture source regions are visualized by dark contours (as on p. 5).

Our analysis suggests that the advection anomalies (p. 5) are enabled
both by changes in circulation patterns and by upwind anomalies in 
surface evaporation and sensible heat fluxes. 
This can be seen well, e.g., in the case of the Australian ecoregion, 
where heat advection from neighboring land areas to the east is 
positively anomalous (p. 5) — thanks to extensive positive upwind
sensible heat anomalies (B) and despite reduced air inflow (A). 

Schumacher et al. (in press) 
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