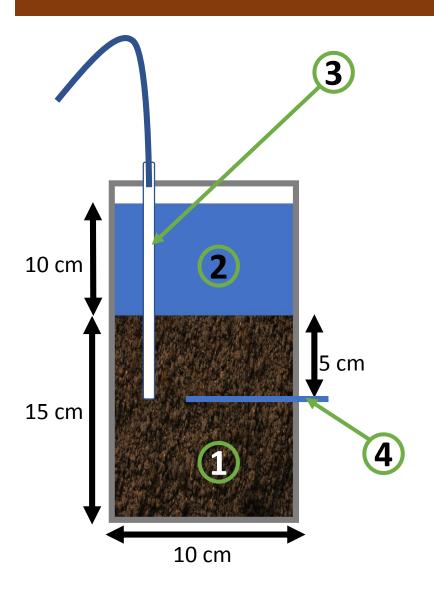
Soil amendments reduce P release from flooded soils: Incubation studies simulating snowmelt and summer flooding

Chammi Attanayake, Darshani Kumaragamage, Chamara Weerasekara, W.A.U. Vitharana, Saman Dharmakeerthi, Emily Van, Doug Goltz and Srimathie Indrarathne

University of Peradeniya

Introduction


- Prolonged flooding could enhance P release from soils due to anaerobic reduction.
- In the Canadian Prairies, flooding is common with spring snow melt and summer precipitation
- Limited knowledge on seasonal differences in flooding-induced P release from soils.

Objective

 To compare P release in flooded soils under simulated summer flooding and spring snowmelt conditions.

 To investigate the effectiveness of gypsum, magnesium sulphate, alum, ferric chloride, zeolite and manganese oxides in reducing P release from flooded soils under simulated summer and spring snowmelt flooding conditions.

Incubation study

- 1 Soil
- 2 DI Water
- 3 Pt Redox probe
- 4 Rhizon flex sampler
- Amendment were mixed with soil/spread on the top (5Mg/ha)
- Incubated at room temperature (22°C) and 4°C for 8-10 weeks

Incubation study

- Pore-water samples were collected at every week
- Analysis in pore-water
 - Dissolved reactive P-Molybdate reductive
 - pH
 - Cations-ICP-OES
 - Anions-IC
 - Electrical conductivity

Conclusion

- Release of soil P into soil solution and floodwater was higher at 22oC than that at 4oC.
- Gypsum, magnesium sulphate, alum, ferric chloride and manganese(iv)oxides were effective in reducing the concentrations of P in the pore- and flood-water at various capacities.
- Zeolite increased the concentration of P in pore- and floodwater.
- Degree of effectiveness of amendments depended on soil properties.

Acknowledgement

- NSERC Discovery grant
- Queen Elizabeth II Advanced Scholar Program at the University of Winnipeg
- Environment and Climate Change Canada through Lake Winnipeg Basin Program