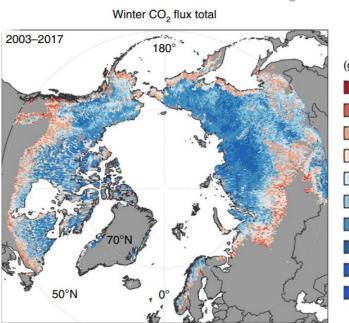
The role of soil characteristics on measured and modelled carbon dioxide (CO₂) fluxes for Arctic dwarf shrub tundra sites

- Differences in net ecosystem CO₂ exchange (NEE) at two Canadian Southern Arctic dwarf shrub tundra sites 1000 km apart can be explained by differences in ecosystem respiration (R_e) due to physiographic setting affecting soil characteristics rather than differences in climate
- Combining land surface model CLASSIC and field measurements (eddy covariance and chambers) indicates that the Daring Lake dwarf shrub tundra site was an annual CO₂ source over 2004-2017

¹Université de Montréal, ²Carleton University, ³Environment and Climate Change Canada, ⁴Trent University, ⁵Wilfrid Laurier University, ⁶Princeton University, ⁷McMaster University, ⁸Alfred Wegener Institute for Polar and Marine Research, ⁹Humboldt University

Carleton



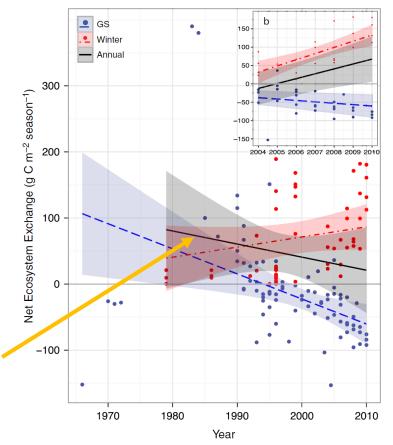
Background & Objectives

- Tundra ecosystems across the vast Arctic region vary greatly in climate, soils, and vegetation.
- The Arctic is warming more rapidly than other regions of the globe and the impact on CO₂ exchange between tundra and the atmosphere is uncertain.
- Studies suggest the CO₂ sink/source strength of the Arctic is changing (Belshe et al. 2013) but there are few studies with annual CO₂ flux observations to confirm these trends.

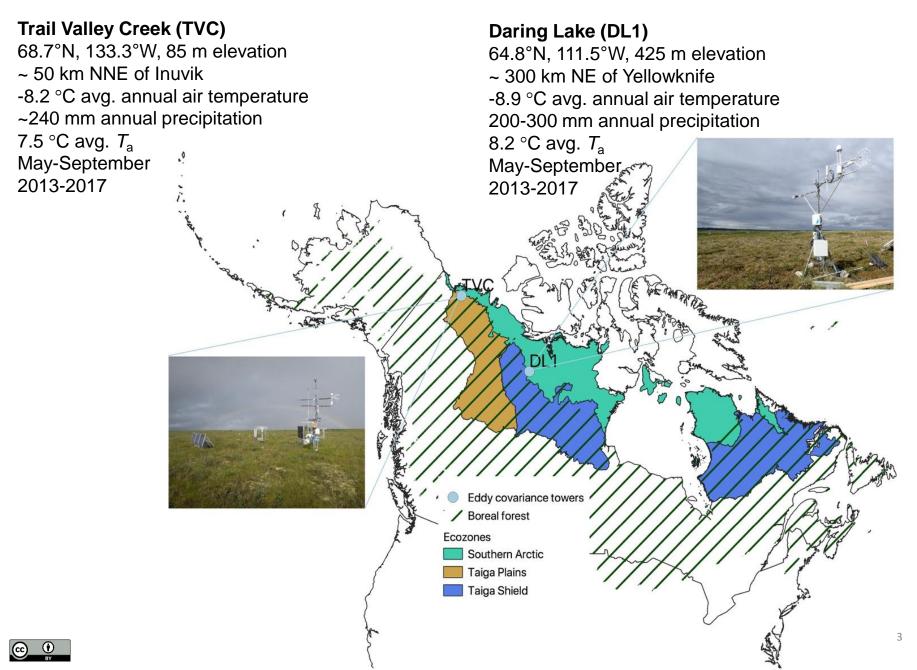
Natali et al. 2019 Nature Climate Change

Highly uncertain due to few data points

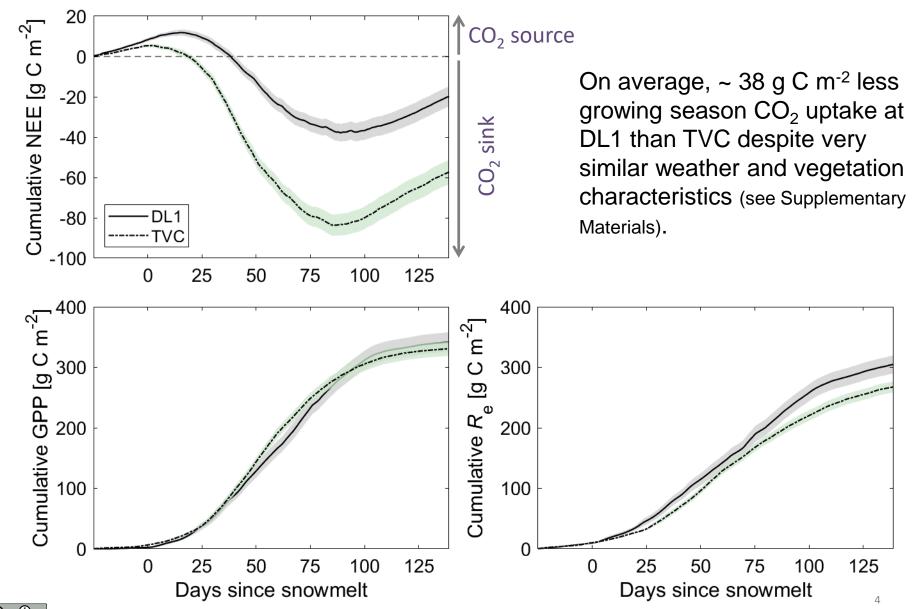
(gCO₂-C m⁻² yr ⁻¹)


160

140


120

- To better understand tundra CO₂ exchange, we compare eddy covariance fluxes (2013 2017) at two
 - Southern Arctic shrub tundra sites 1000 km apart.
- Process-based models enable us to determine winter
 CO₂ efflux (Natali et al., 2019) and thus annual NEE,
 where year-round measurements are very difficult to
 obtain.

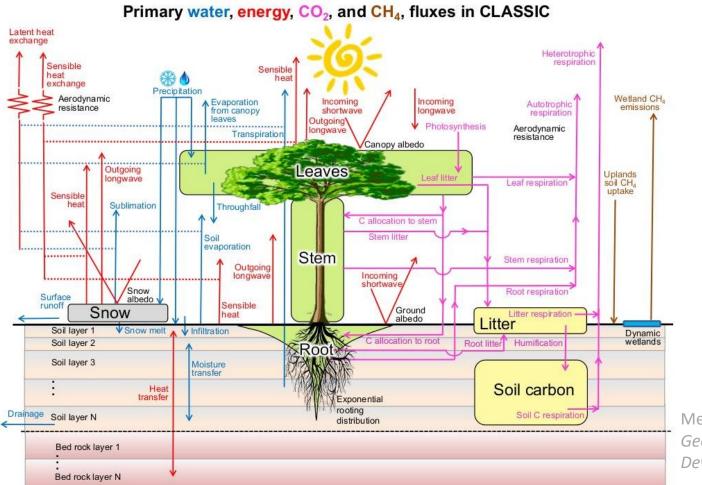


Two Southern Arctic dwarf shrub tundra sites 1000 km apart

Differences in average (2013-2017) cumulative NEE may be largely due to greater ecosystem respiration (R_e) at DL1 with only small differences in gross primary productivity (GPP)

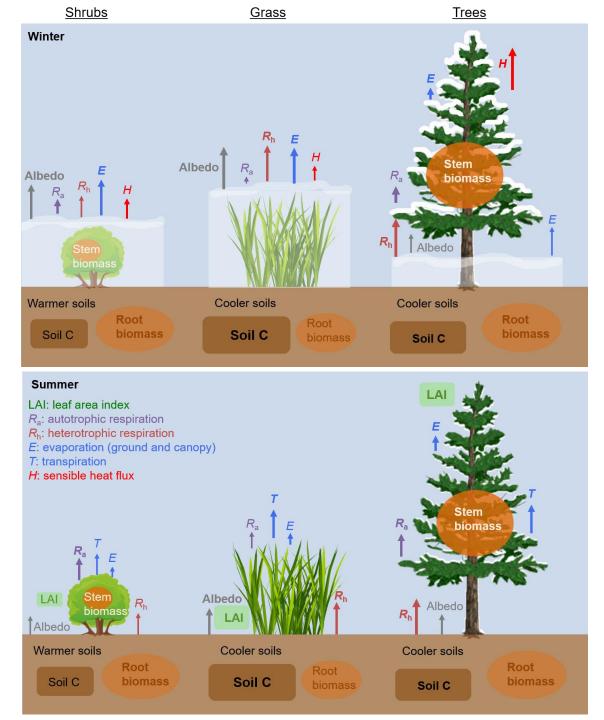
Data was processed the same way for both sites

Summary: Similar GPP at the sites, greater R_e at DL1, therefore greater net CO₂ uptake at TVC . Although the two sites have similar weather and vegetation characteristics, TVC has cooler soils and less thaw.


Hypothesis: Deeper porous surface organic layer (including moss layer) at TVC dries quickly and acts as a mulch limiting ground heat penetration in summer.

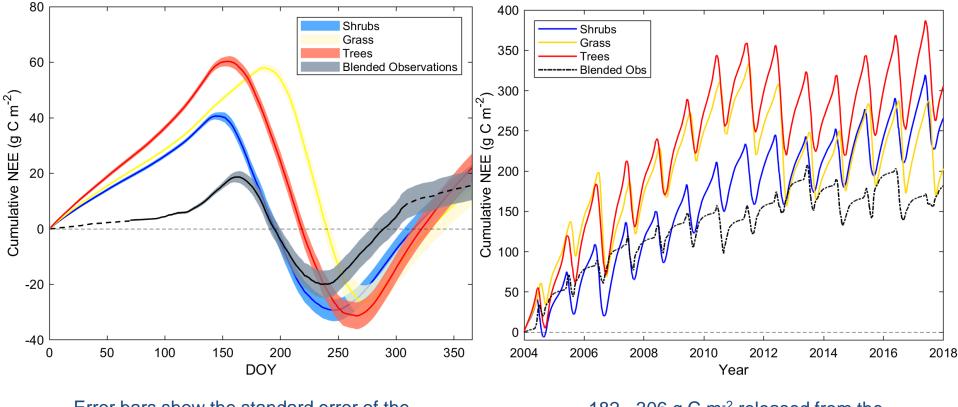
Cooler soils = lower soil respiration at TVC and greater net CO_2 uptake in summer.

To estimate annual NEE we used the CLASSIC model ...


Canadian Land Surface Scheme including Biogeochemical Cycles (CLASSIC) v.1.0 (successor to CLASS-CTEM)

Melton et al. 2019 *Geoscientific Model Development*

- Spin-up using GSWP3-ERA5 reanalysis meteorological data for 1901-1925; run using reanalysis data and transient CO₂ for 1901-2004 and using input variables observed at DL1 from 2004-2017
- 22 soil layers down to 20m depth,
- permeable depth of 5m,
- top 10 cm fibric organic layer,
 - > 10 cm mineral soil consisting of 80% sand & 4.4% clay


Differences between the plant functional types (PFTs) impact the carbon as well as energy and water balances

> Results using the new shrub PFTs in CLASSIC are compared to grass and tree run outputs

7

Shrub PFT improves CLASSIC representation of NEE at DL1 (over tree and grass simulations). DL1 is a CO_2 source over 2004-2017.

Error bars show the standard error of the mean, no biases are included

~182 - 306 g C m⁻² released from the DL1 site from 2004-2017

- Shrub, grass and tree results are the CLASSIC model results and the blended observations combine eddy-covariance (EC) (solid black line) and forced diffusion chamber (dashed black line) NEE measurements.
- Chamber measurements were only available for one winter (used for all years).
- Grass and tree runs are too productive and shifted in time.

Conclusions

- Despite being located 1000 km apart, the two dwarf shrub tundra sites show similar growing season weather (see Supplementary Materials) and GPP. However, Trail Valley Creek showed a larger net growing season CO₂ uptake than Daring Lake.
- 2. Differences in R_e and NEE were linked to differences in soil characteristics such as organic matter content, soil texture and thermal properties affecting thaw depths.
- 3. Combination of measurements and land surface models are important to better estimate the C balance of high-latitude sites, where year-round measurements are especially difficult to obtain.
- 4. Both CLASSIC simulations and EC/chamber measurements indicate that Daring Lake was a net source of CO_2 over 2004-2017.
- 5. Shrub (266 g C m⁻²), grass (203 g C m⁻²) and tree (306 g C m⁻²) model runs have different cumulative NEE over 2004-2017 showing the importance of representing tundra ecosystems with appropriate PFTs in global C models.

Supplementary Materials

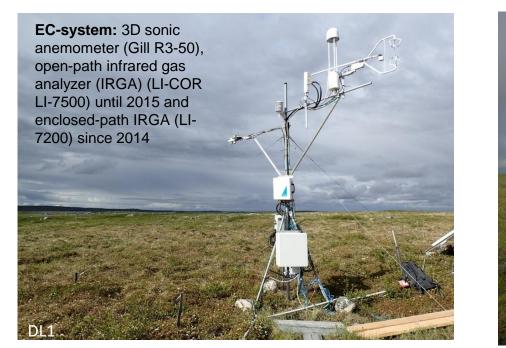
Site Characteristics

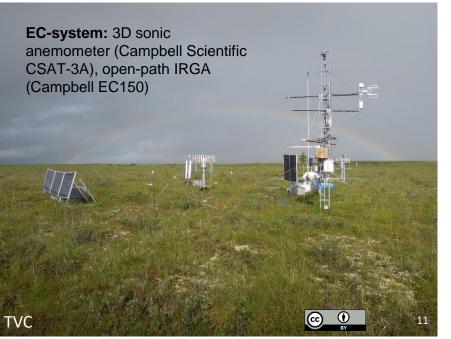
Leaf area index (Avg ± SE) Thaw depth (Avg ± SE) Snowmelt date (DOY) Soils

Daring Lake (DL1)

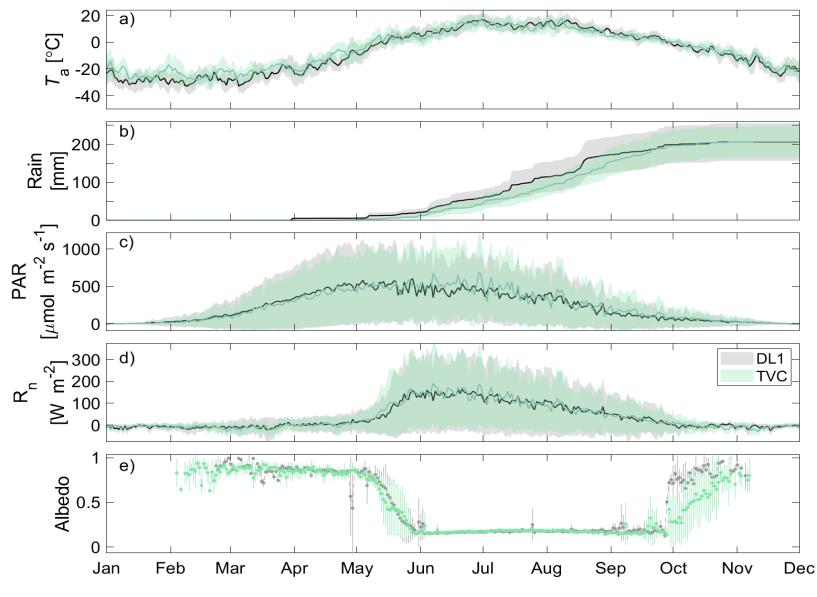
- $0.52 \pm 0.05 \text{ m}^2 \text{ m}^{-2}$
- 85 ± 3 cm
- 135-144
- shallow organic layer (8 ± 2 cm) overlying sand to loamy sand mineral soil

Trail Valley Creek (TVC)


- $0.66 \pm 0.11 \text{ m}^2 \text{ m}^{-2}$
- 74 ± 5 cm
- 135-151
- deeper surface organic layer (18 ± 3 cm) overlying silty clay mineral soil


Both sites with continuous permafrost & similar vegetation species with different abundances: *Ledum decumbens, Empetrum nigrum, Loiseleuria procumbens, Betula glandulosa, Vaccinum uliginosum, Salix* spp., *Carex* spp., *Eriophorum vaginatum*

% Cover ± SE

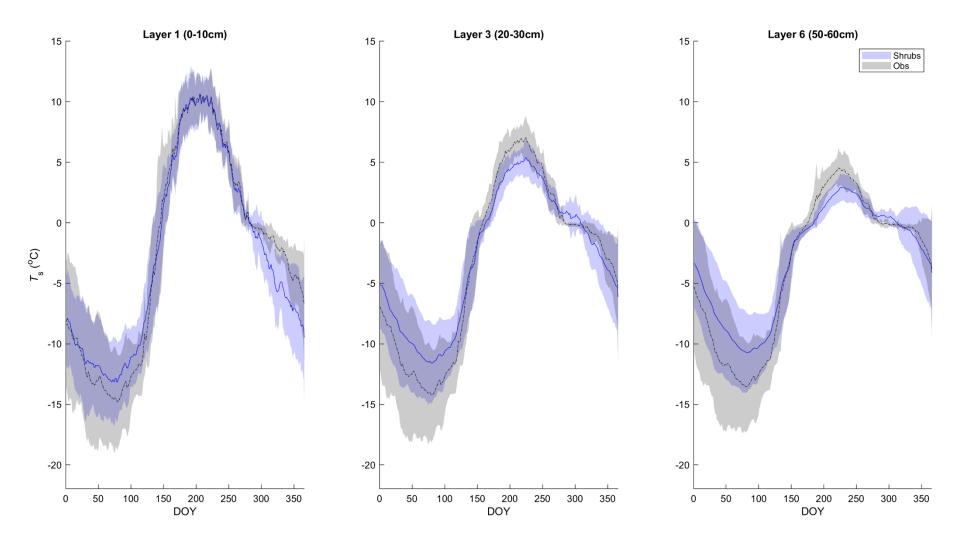

- Vascular plants: 71.2 ± 4.8
- Moss: 25.2 ± 8.8
- Lichen: 40.4 ± 9.3
- Vascular plant composition (%) ± SE
- Shrubs: 81.9 ± 7.8
- Graminoids: 17.6 ± 7.9
- Forbs: 0.5 ± 0.2

- Vascular plants: 92.5 ± 3.4
- Moss: 31.5 ± 10.4
- Lichen: 51.0 ± 10.9
- Shrubs: 30.3± 4.1
- Graminoids: 64.8 ± 3.6
- Forbs: 4.9 ± 3.2

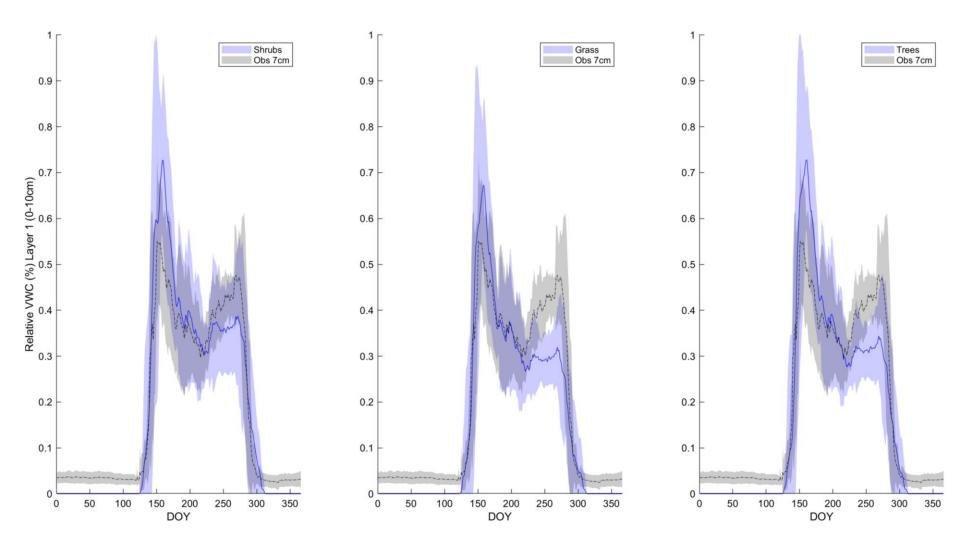
Daily mean climate variables at DL1 and TVC averaged over 2013 – 2017 including their standard deviation

Despite 1000 km separation, similar weather at the two sites

New shrub and sedge plant functional types (PFTs) in CLASSIC


CLASS PFTs	CTEM PFTs					
Needleleaf Tree	Evergreen	Deciduous (NdlDcdTr)				
(NdlTr)	(NdlEvgTr)					
Broadleaf Tree	Evergreen	Cold Deciduous	Drought/Dry Deciduous			
(BdlTr)	(BdlEvgTr)	(BdlDCoTr)	(BdlDDrTr)			
Crop (Crops)	C ₃ (CropC3)	C ₄ (CropC4)				
Grass (Grass)	C ₃ (GrassC3)	C ₄ (GrassC4)	Sedges (Sedge)			
Broadleaf Shrub	Evergreen	Cold Deciduous				
(BdlSh)	(BdlEvgSh)	(BdlDCoSh)				

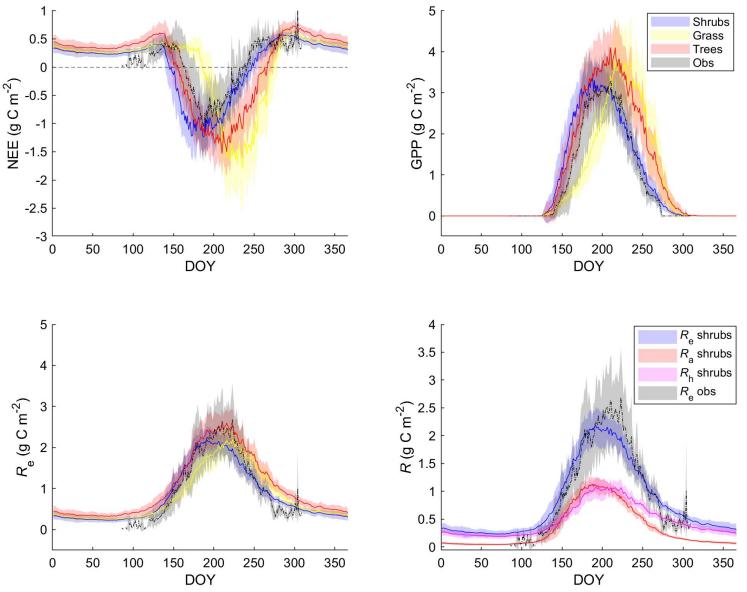
Simulations – fractional coverage of the PFTs:


- 1) Shrub run: BdIEvgSh = 30%, BdIDCoSh = 12%, Sedge = 18%
- 2) Grass run: C3 grass = 60%
- 3) Tree run: NdIEvgTr = 30%, BdIDCoTr = 12%, C3 grass = 18%

40% bare ground

Modelled and observed daily soil temperatures at DL1 for the shrub run averaged over 2004-2017

Modelled and observed relative daily volumetric water content at DL1 for the shrub run averaged over 2004-2017



(1)

Soil and vegetation characteristics at DL1

	Model			Observations	
	Shrubs	Grass	Trees	Observations	
Max. vegetation height (m)	0.22	0.35	20.68	0.18	
Root depth (m)	0.38	0.48	0.40	~0.40	
Active layer depth (m)	1.5	1.4	1.3	0.74 - 0.94	
Max. LAI (m ² m ⁻²)	1.1	1.8	1.9	0.52	
Snow depth (m)	0.76	0.76	0.73	0.20 - 0.40	
Max. green leaf biomass (g C m ⁻²)	123	74	137	90	
Max. stem biomass (g C m ⁻²)	176	0	2081	85	
Max. root biomass (g C m ⁻²)	491	434	570		
C soil (kg C m ⁻²)	10.3	21.9	15.5	18.5 ± 4.7 (SD) for top 80 cm	

Daily mean NEE, GPP, R_e and its components autotrophic (R_a) and heterotrophic respiration (R_h) at DL1 averaged over 2004 – 2017 including their standard deviation

Despite overestimation in the spring, shrubs perform better than grasses and trees. The timing of GPP and thus NEE is shifted for grasses and peaks too high for both grasses and trees.