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Key Points:

« Millimeter-scale tsunamis from an
Mw 6.0 earthquake were captured
by the S-net, a new nationwide
pressure gauge array off Sanriku,
Japan

« Tsunami signals were identified
from the pressure data adjacent to
the source, which were
contaminated by signals irrelevant
to tsunamis

« We inferred the stress drop of the
earthquake from the tsunami data
more reliably than could be done
from seismogram analysis
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Millimeter-Scale Tsunami Detected by a Wide and Dense
Observation Array in the Deep Ocean: Fault Modeling

of an Mw 6.0 Interplate Earthquake off Sanriku,

NE Japan

T. Kubota® (2), T. Saito' (), and W. Suzuki'

!National Research Institute for Earth Science and Disaster Resilience, Tsukuba, Japan

Abstract A new dense and widely distributed tsunami observation network installed off northeast Japan
detected millimeter-scale tsunamis from an Mw 6.0 shallow interplate earthquake on 20 August 2016.
Based on the fault model deduced from this data set, we obtained a stress drop of 1.5 MPa for this event,
similar to those associated with typical interplate earthquakes. The rupture area was unlikely to overlap
with regions where slow earthquakes occur, such as low-frequency-tremors and very-low-frequency-
earthquakes. The results demonstrated that this new network has dramatically increased the detectability
of millimeter-scale tsunamis. Some near-source stations were contaminated by large pressure offset
signals irrelevant to tsunami, and we must therefore be careful when analyzing these data. Nonetheless,
the new array enables estimations of the stress drops of moderate offshore earthquakes and can be used to
elucidate the spatial variation of mechanical properties along the plate interface with much higher
resolution than previously possible.

Plain Language Summary Tsunamis are generated when an earthquake occurs beneath the
seafloor. Far fewer tsunami observations have been recorded from moderate earthquakes than large to
giant earthquakes because tsunamis created by moderate earthquakes have been too small to be

observed. On 20 August 2016, a moderate earthquake occurred off Sanriku, in northeastern Japan, and a
tsunami with a height of less than 1 cm was recorded by a new seafloor tsunami observation network.
This network has many tsunami sensors distributed much closer to each other and over a much wider
area than any other previous network in the world. Using these data, this study estimated the source
location and size, and the slip amount of the 2016 earthquake with higher accuracy, which was
impossible to achieve from past observations because they were too far away from the earthquake and the
signals were too small. Using this source information, we could estimate the stress drop associated with
the earthquake, which is important because the stress drop information deepens our understanding of
how and why earthquakes happen.




M>~7 EQ modeling using offshore pressure gauge (PG) tsunami data

M >~7 tsunamis have been detected by offshore PGs and used for fault modeling.

> However it is challenging to observe M<~6 tsunami

— Typical offshore PG networks contain

too few stations and remote from
the source.
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Millimeter-scale tsunami in the 2016 Off-Sanriku EQ (Mw 6.0) 3

v Recently a new dense and wide observation network (S-net) is constructed.

v' Millimeter-scale tsunami was observed by the S-net during [ reguiar interplate £qs (VED Fonet)
an Mw 6.0 EQ off Sanriku on 20 Aug 2016. o VLt (Nt ot ol 2015)
— at northern edge of the 1896 Sanriku EQ. o
— near the active regions of the low-frequency tremors and
very-low frequency EQs (VLFEs)
(e.g., Tanaka et al. 2019; Nishikawa et al. 2019; Baba et al. 2020)
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Data processing

v If only from each single trace,
it is difficult to recognize tsunami
due to noise.

v' When traces are aligned, westward-

propagating tsunami is recognizablg.
v’ Large step-like signal is observed s
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Analysis (1): Estimation of fault horizontal location

v Horizontal location of the fault was estimated via the
grid-search analysis
- Scaling law of Blaser et al. (2010) is used for assuming the rectangular
fault dimension (L and W).
- GCMT seismic moment is used to determine slip amount D.
- Depth is fixed to coincide with the plate boundary model of lwasaki
et al. (2015).
- Tsunami is calculated by solving linear-dispersive equation.
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Analysis (1): Estimation of fault horizontal location

v' Optimum fault was estimated at ~10 km west of the GCMT centroid.
» When shifting the location by ~ 5km, the arrival time cannot be explained.

- horizontal resolution
is £ ~5 km.
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Analysis (2): Fault dimension modeling

v' Optimum model had L=17 km, W=5 km, and

D=40.5 cm (Mw 6.0, u=40GPa)
v’ Static stress drop of Ao ~ 1.5 MPa

— Observed == Used for analysis — Grid-search for dimension
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Analysis (2): Fault dimension modeling

» Fault dimensions of L > 20 km or W > 7 km cannot explain the observation.
— Uncertainty of fault dimensionis L £20 km and W <7 km

a) S4N12 (Distance=54km, Azimuth=285°) (b) S4NO09 (Distance=37km, Azimuth=46°)
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Discussion (1): spatial heterogeneity of stress drop 1

v' Ao inside the rupture area of the 1992 Nicaragua tsunami EQ was
significantly smaller than outside (Bileketal. 2016)

— However: M-3040506
. . . 140° 141° 142° 143° 144 145
no systematic spatial difference of Ao was seen off- s
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Discussion (2): relationship with other interplate phenomena
v' The 2016 fault is located at northern edge of the

1896 Sanriku tsunami EQ (satake et al. 2015)

v' The 2016 event is isolated from the

low-frequency tremors and VLFEs

(Tanaka et al. 2019; Nishikawa et al. 2019)

» These may reflect spatial difference in 40.5°

frictional properties along plate interface?|

— furt
will
the

(e.g., Nishikawa et al. 2019)
ner investigation of regular EQs
e important to discuss

neterogeneous frictional property.
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Summary

We investigated the S-net millimeter-scale tsunami records during the 2016 Off-

Sanriku EQ, recorded by the S-net, new seafloor pressure gauge network.

v’ The fault was located ~10 km to the west of the GCMT centroid and was unlikely to overlap
with regions where slow earthquakes phenomena occur such as the tremors and VLFEs.

v’ Stress drop seemed not so small as expected in tsunami EQ like the 1896 Sanriku EQ, which
may reflect the spatial heterogeneity of frictional property along the plate interface.

» Take-home massage!
— S-net array dramatically increases the detectability of a millimeter-

scale tsunami and the constraints on earthquake source parameters
of moderate EQs off eastern Japan.

— More tsunami examples due to minor-to-moderate EQs by this S-net
dense and wide array will reveal the spatial variation of the stress
drops or heterogeneity of mechanical properties along the plate
interface, with much higher resolution than previously possible.
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