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An atmospheric surface layer study: The Idealized horizontal Planar Array
experiment for Quantifying Surface Heterogeneity (IPAQS)
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18 2D sonics deployed on 36 2-m masts, 3 10-m towers with profiles, and one 28-m tower reverses sign causing a reduction in turbulence production, a more stratified flow structure, and

The spatial variability of the fluxes is directly coupled to closure of the energy balance. This large variability creates )
a larger mean wind speed.

uncertainty in interpreting the meaning of data from individual stations

results.
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humidity & Heterogeneity: mean temperature advection and flux divergences
temperature

Field Campaign Location:
U.S. Army Dugway Proving Ground, UT

* |IPAQS is allowing us to use some of the best available technology
through collaborations to understand and quantify the impact of

Advection and turbulent flux divergences between

! Gront Salt Lak 1 convective and non-convective days: heterogeneity from the Kolmogorov scale to km scales as never before In
ancguver reat a t a e i iy . . .
- ok Great Salt Lake Desert Results between convective and non-convective days an idealized setting

e gton Montana Dakota illustrate that mean heating through horizonal advection is

« Results will compliment other current projects (i.e. CHEESEHEAD), which

stronger on convective days. We hypothesize that local

South
Oegont” (Vi o W D surface heterogeneities are generating stronger persistent air will also tackle similar issues in more complex settings
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A=A+ dominate near the surface. In the
K : morning, when the convective
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