Exploring The Birch Effect In The Subsurface Using Diffusive Soil Probes

Rob Roscioli¹, Joanne Shorter¹, Jordan Krechmer¹, Laura Meredith², Juliana Gil-Loaiza²

•Department of Energy Grant No. DE-SC0018459

Diffusive Gas Probes to Explore Subsurface Processes

- Buried hydrophobic porous probes
 - Subsurface dynamics by carrying subsurface gas to instruments
 - spatially and temporally-resolved dynamics with high signal-tonoise
 - Quantifying: N₂O, NO, CO₂, CH₄, VOCs To inst Measuring both *subsurface* and *fluxes*
- 3x 20 L columns, single probes buried ~10-25 cm below surface
 - 1) northern temperate forest soil
 - 2) 50/50 northern temperate forest soil /

town compost

3) 50/50 northern temperate forest soil / composted manure

Dil.

flow

VICI

Dil.

flow

Flow

in

valve

arrav

Flow in

Dilution

Trace Gases From 3 Columns – Rewetting After Drought

- Comparable behavior between all three columns *despite different composition*
- N₂O/NO pulses fast compared to CO₂ response · NO pulse precedes N₂O · Fluxes (circles) temporally match subsurface concentrations (shaded)

Subsurface VOC Response to Rewetting

- Rise and fall among metabolites
 - Characteristically different responses among VOCs
- Acetonitrile follows N₂O
- Isoprene, mono-, sesquiterpenes slower response
- Ethanol slowly decreases