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The complexity of fault geometry exists in global and local scales

2005 Apr 29 16:24:38  Plate from PB2002 (Peter Bird) Dataset

* rupture nucleation centers north and south of SGP

(Shi and Day, 2014)




Source dynamic simulations have suggested fault strength
and geometric shape can cause similar fault slips
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For a given slip model, the slip gap may be caused by a barrier. Was it
caused by stress heterogeneity or fault geometric change?

~ Barrier of stress or geometry?
| | _

e L Note: The increased stress around the
slip gap can sometimes exceed the

co-seismic stress drop (Aki, 1979)

._

o
|

Distance down dip (km)
T
/@L
/
gee———————=—=
AR

10 - ) : a\'/?2
9 ~ Slip (m) o=t05)
15 _ q:%%m;—
~20 ~10 0 10

Distance along strike (km)

2017 Jiuzhaigou Mw6.5 earthquake
(Hu et al., 2020, Tectonophysics)




The fault geometric complexity can be estimated from
either seismic or geodetic ways.

» In seismic studies, the multiple-point moment tensor solutions

were estimated and thus the variations in fault strike, dip and
rake can be obtained.

» In geodetic researches, the fault geometry was usually directly
estimated in a non-linear way.
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Geodetic Inversion

Since there is no need to solve rupture
velocity, co-seismic geodetic inversion
has less unknowns compared with
seismic inversion. However, the .
relation between the deformation data
and fault parameters (strike, dip and
rake) is nonlinear.
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(Shen et al., 2009)



What we have done

»Discretizing the fault into sub-faults. If the sub-fault dimension is
small enough (much less than the source-to-site distance), they can
be treated as point sources.

»Based on the point source approximation, we can build a linear
equation between the sub-fault moment tensors and co-seismic
deformation.

»By determining the sub-fault moment tensors, we can get the
strikes, dips, and rakes of each sub-fault, and get the knowledge of

fault geometric complexity.
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FP1 0°/90°/0°  225°/90°/180° 0°/90°/-90° 0°/0°/90° 90°/45°/90°
FP2  90°/90°/180°  315°/90°/0°  90°/0°/90°  270°/90°/-90° 270°/45°/90°

Five elementary moment tensors
Method

As pointed out by Kikuchi and Kanamori (1991), a deviatoric moment tensor
can be represented by five elementary double-couple moment tensors

M= 25:(051' - M;)
i=1

Thus the surface deformation U caused by sub-faults (j=1, ..., N) is
N 5
U= ZZ(aij +05),
j=1 i=1

where g;; is the deformation caused by moment tensor M; of sub-fault j. The
equation with the spatial smoothing is

U G
0 - D [m] (Zhang and Wang, 2015, GJI)



The point source
approximation

We calculated the surface
deformation based on uniform
slip (1 m) on a 10 km <10 km
fault plane with a pair of
conjugated fault parameters.

From the relative difference,
we found the source-to-site
distance should be ~3 times
larger than the fault dimension
to satisfy the point source
approximation.
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In application to the 2008 wnf 17
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Wenchuan earthquake, a line g e
fault was used and divided into W) ’f& e

31 sub-faults. Co-seismic GPS
data were used in the
application.
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The sub-fault moment tensors of the The variations of scalar moment, strike,
2008 Wenchuan earthquake, showing dip, and rake along the strike
thrust and strike slips in the southwest
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Comparison between our geodetic model obtained in this study (black)

and previous teleseismic model (gray cicles, Zhang et al., 2009). The

geodetic mechanism variations are relatively more smooth and systematic.
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The 2015 Gorkha earthquake has drawn interests
on its complex fault geometry, particularly on its
dip angles and variations.
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e
Method

The moment tensor of a fault
M, =—M,(sin&cosAsin 24, +sin25sin Asin’ ¢,)

M,, =+M,(sin&cos A cos2g, +%sin 25sinAsin2¢4.) =M
M,, =—M,(cosocosAcosg, +cos2osinAsing) =M,
M, =+M(sincos Asin 2¢; —sin25sin A cos® ¢)

M, =-M,(cosdcosAsing, —cos25sinAcosg) =M,
M,, =+M,sin26sin A

It can be separated into strike-slip and dip-slip components

M =cos S cos AM* +sin 6 cos AM { k- cos 25sin AM ® +sin 26sin AM *
0 0 —COS ¢ 0 0  —sing
M'EM,| O 0 —sing, ||[IM*=M,| O 0  cosg |,
—COS¢,  —Sin ¢ 0 —Sing,  COS ¢ 0
—sin24, cos2g, O —sing,  0.5sin2¢, 0
M?|=M,| cos24, sin24, O], M*=M,| 0.5sin24, —cos’¢, O
0 0 0 0 0 1




For a dip-slip fault with a known or assumed strike

M =MP = aMg + BMys,

where
0 0 —sing
MP=MP(E=0)=| O 0 cosg |,
—Sing cosg 0

—sin‘g  Zsin2¢ 0]
Mys = MP (6 = 45) = | L5 —cos?

45 ~Sin2¢ cos“p Of
0 0 11

(Zhang et al., 2017, GRL)




Particularly for a thrust fault

M =MP = aMg + BMys,

By minimizing the following equation

A= + k|[V2all, + k|78,

N
u-— z (9o + IoskBr)
k=1 5

The dip and slip distributions can be obtained
= %arctan(ﬂ/a), My =/ a?+S2.

(Zhang et al., 2017, GRL)
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Dip distribution
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Slip distribution
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Dip and slip model
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Compared with geologic model

SRS
OIS
(SRS
\\\s\s‘:ss::
\‘\‘:“‘

85.5°E 86.0°E 86.5°E

(Zhang et al., 2017, GRL)

84.5°E 85.0°E

(Hubbard et al., 2016, Geology)




From the dip model, we can conclude that the slip gap previously identified in
the northeast of the slip area should have been caused by a geometric barrier.

The barrier may have blocked the ruptures, causing significant high-
frequency seismic signals.
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Whether the inversion closely depend on the fault position: Wenchuan earthquake
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Whether the inversion closely depend on the Fault

fault position: Gorkha earthquake
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Future works: Potential relation between variations of

fault geometry and rupture velocity
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