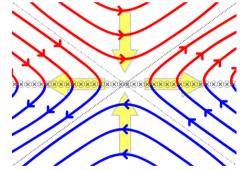
Automatic identification of magnetic reconnection events in 2D Hybrid Vlasov Maxwell simulations using Convolutional Neural Networks

A. Hu¹, M. Sisti^{2,3}, F. Finelli², F. Califano², J. Dargent², M.Faganello³, E. Camporeale^{1,4,5}, J. Teunissen¹

¹Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
 ²Dipartimento di Fisica, Universita di Pisa, Italy, EU
 ³Aix-Marseille University, CNRS, PIIM UMR 7345, Marseille, France, EU
 ⁴CIRES, University of Colorado, Boulder, CO, USA
 ⁵NOAA Space Weather Prediction Center, Boulder, CO, USA



This research is developed in the framework of the European project AIDA (Artificial Intelligence Data Analysis)

Significance

 Magnetic reconnection is a fundamental process in space and laboratory plasmas in which magnetic energy is converted into kinetic energy, released in the form of accelerated particles, flows and heating. Although the process itself is highly localized, it eventually leads to a global change of the magnetic field topology.

Goals Recognize reconnection in Now 2D simulations **Future** 1D time series 'Virtual satellites' **3D** simulations MMS data The AIDA project has received funding $(\mathbf{\hat{I}})$ from the European Union's Horizon 2020 Research and Innovation programme BY under grant agreement No 776262.

Simulations performed at CINECA on Marconi

- 2D Hybrid Vlasov-Maxwell model
 - Ions: Vlasov (distribution function not yet used)
 - Electrons: fluid

Sim 1

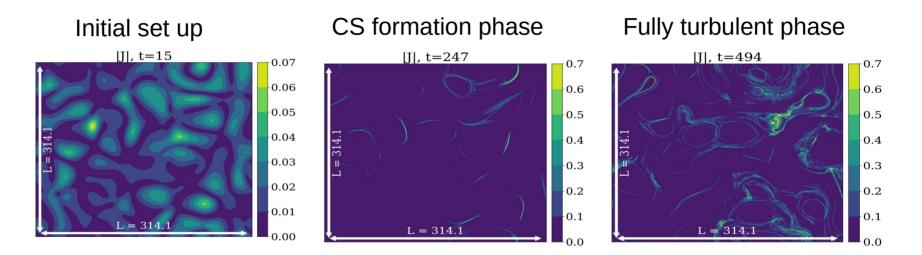
- Resolution: 3072x3072 x 51³
- $\Delta L/d_i: 0.1$
- $N_{samples} = 2024$
- Cost: ~5Mh core hours
- Memory: 10Tb

Sim 2

- Resolution: 2048x2048x51³
- $\Delta L/d_i$: 0.15
- $N_{samples} = 124$
- Cost: ~1Mh core hours
- Memory: 4Tb

The AIDA project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 776262.

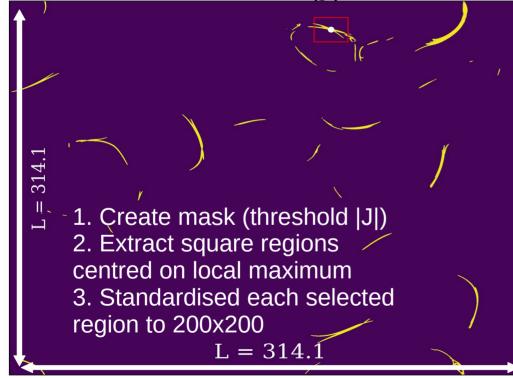
Current sheet temporal changes



How the current sheet changes with the time passing by in Sim 1.

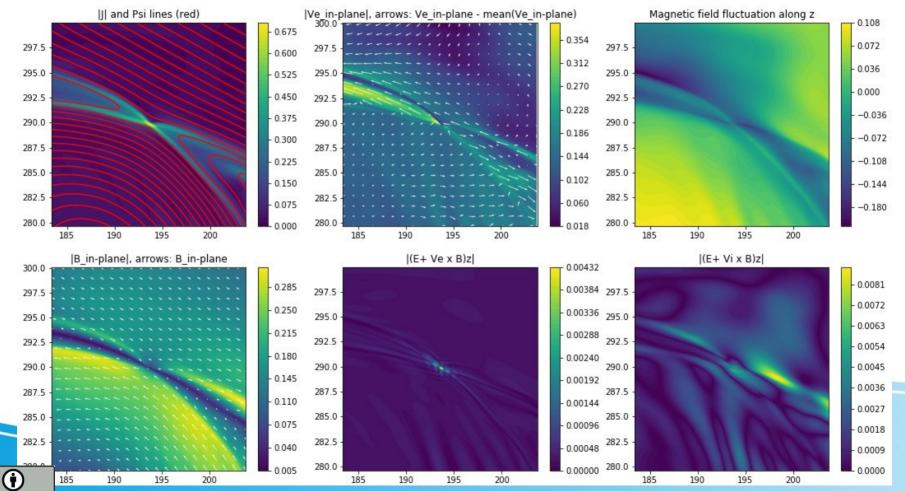
Current Sheet and Selected Variables

Mask based on |J|, t=247



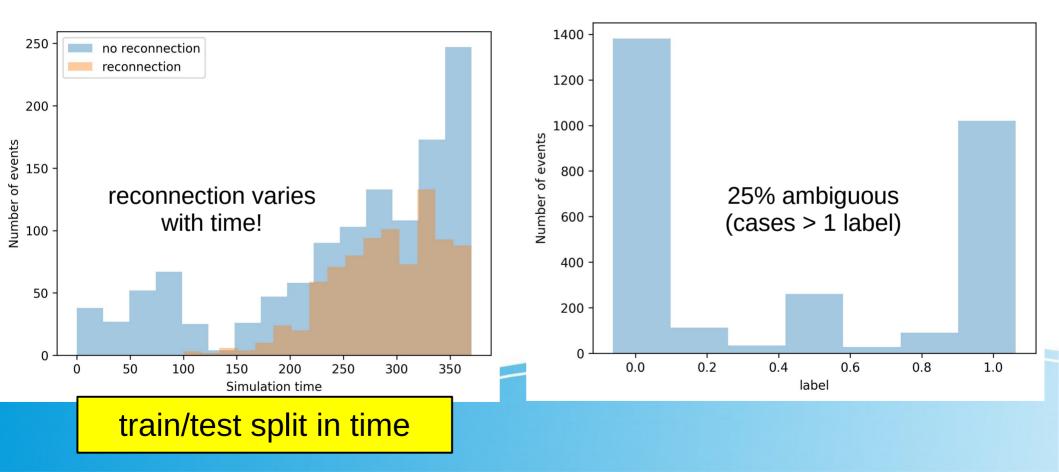
Variable name	Description					
$ \vec{J} $	L_2 -norm of total current density \vec{J}					
Ψ	flux function, $\vec{B} = \nabla \Psi \wedge \hat{z}, \ \vec{J} = -\nabla^2 \Psi$					
$V_{e,x}$	electron x -velocity					
$V_{e,y}$	electron y -velocity					
$V_{e,z}$	electron z -velocity					
$V_{e,\mathrm{plane}}$	$\sqrt{V_{e,x}^2+V_{e,y}^2}$					
B_z	z-component of magnetic field					
$B_{ m plane}$	$\sqrt{B_x^2 + B_y^2}$					
$E_{\mathrm{dec},e}$	$(\vec{E} + V_e \times \vec{B})_z$ (decoupling electrons)					
$E_{\mathrm{dec},i}$	$(\vec{E} + V_i \times \vec{B})_z$ (decoupling ions)					

Variables in a selected region for human labelling

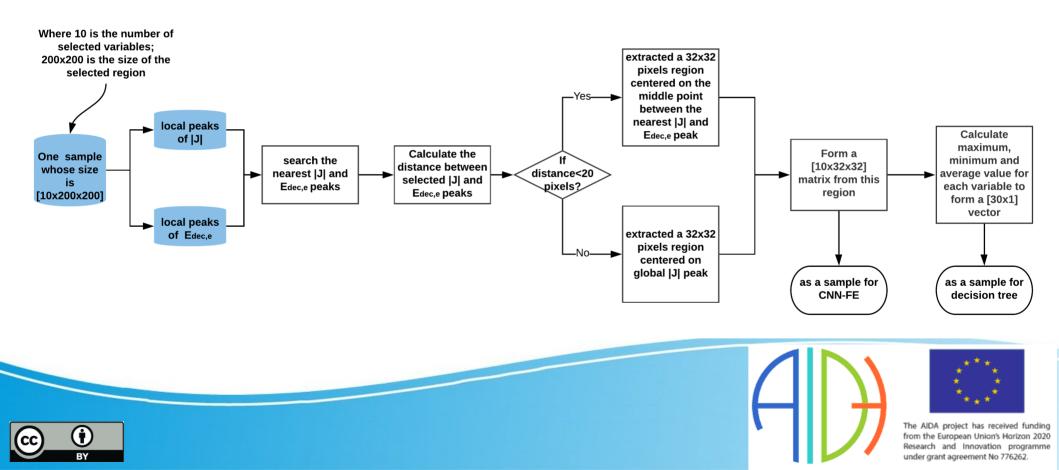


BY

Statistics Sim 1

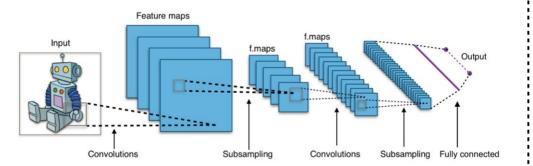


Feature engineering

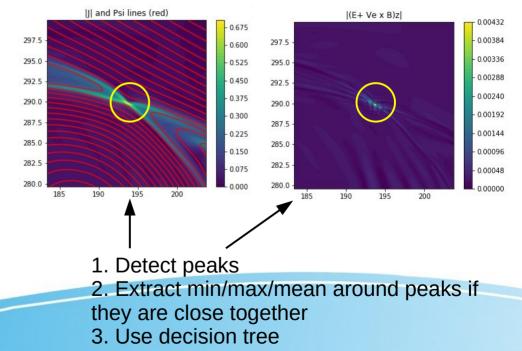


Machine learning models

Convolutional Neural Network (CNN)



Heuristic model



Machine learning models

Used model in this study

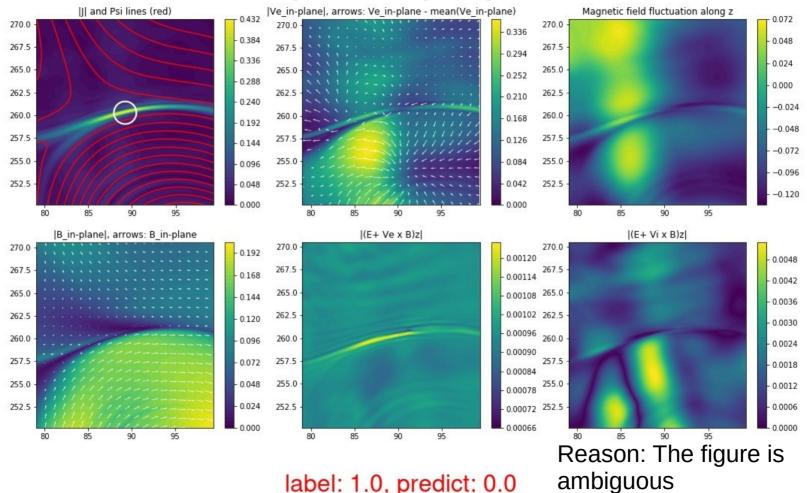
name	feature engineering	input (per variable)	
CNN-origin	×	200^2 area	
CNN-FE	\checkmark	32^2 area	
decision tree	\checkmark	min, max, mean of 32^2 area	
		A)	The AIDA project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 776262.

Results

No.	Training set	Test set	Model	TP	FP	FN	TN	F1 score	accuracy	MCC
1	Sim 1	Sim 2	CNN-FE	58	12	22	32	0.73	0.77	0.44
2	(33%-100%)	(0-33%)	CNN-FE	12	-	E.	-	0.76	0.85	0.56
3	(0-33%), (67%-100%)	(33%-67%)	CNN-FE	-	-	2	-	0.74	0.84	0.55
4	(0-67%)	(67%-100%)	CNN-FE	239	52	134	196	0.72	0.70	0.42
5	(0-67%)	(67%-100%)	$_{\rm CNN}$	223	58	150	190	0.68	0.67	0.36
6	(0-67%)	(67%-100%)	Decision tree	266	88	107	160	0.62	0.68	0.35

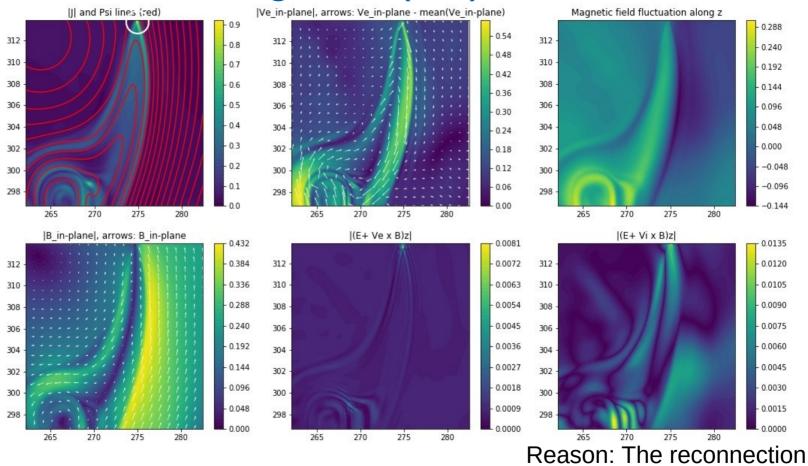
Except Scheme No. 1, all the percentage of both training and test sets are referring to Sim 1

False-Negative (FN) case



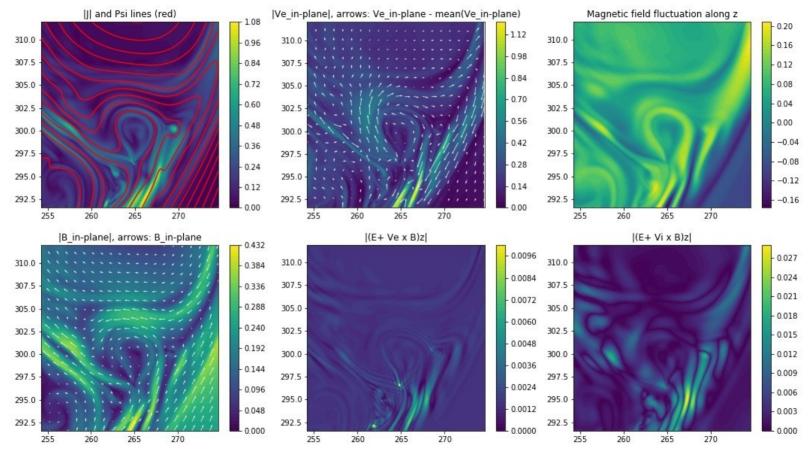
label: 1.0, predict: 0.0

False-Negative (FN) case



label: 1.0, predict: 0.0 site is on the edge

False-Positive (FP) case



label: 0.0, predict: 1.0

Reason: Wrong label

Conclusion & Future

1. The CNN-FE model is generic to other simulations.

2. The influence of each variable to reconnection label has also been investigated in this study. The results show that |J| and $V_{e,z}$ contribute most to the reconnection classification. Ψ , B_{plane} and $V_{e,plane}$ are slightly less significant in comparison with the first two variables. The other variables, $V_{e,x}$, $V_{e,y}$, B_z and $E_{dec, i}$ are not very significant to the classification.

3. The developed CNN-FE model also manages to find good reconnection events even which an human expert might make a mistake with.

