EGU General Assembly 2020

D2739 | EGU2020-12171

Nature of Elsässer Variables in the Slow Solar Wind Turbulence

—— Fluctuation Amplitudes of Magnetic Field Directional Turnings and Magnetic-Velocity Alignment Structures

Xin Wang^{1,2,3}, Chuanyi Tu², Jiansen He²

- ¹ School of Space and Environment, Beihang University, Beijing, China wangxinpku0209@gmail.com
- ² School of Earth and Space Sciences, Peking University, Beijing, China
- ³ Key Laboratory of Space Environment monitoring and Information Processing of MIIT

D2739 | EGU2020-12171 2020.05.06

OUTLINE

- CONTENTS 1/Background
 - Debate on the nature of z[±]
 - 2/Observations
 - Highly Alfvénic Fast Wind
 - Time series, CF, power spectra
 - Slow Wind
 - $-z^{\pm}$ in C_{vb} - σ_r plane
 - 3/Conclusion
 - Fast Wind : z⁻ → Noise
 - Slow Wind: $z^{\pm} \rightarrow$ Combination of MFDT and MVAS

1. Background

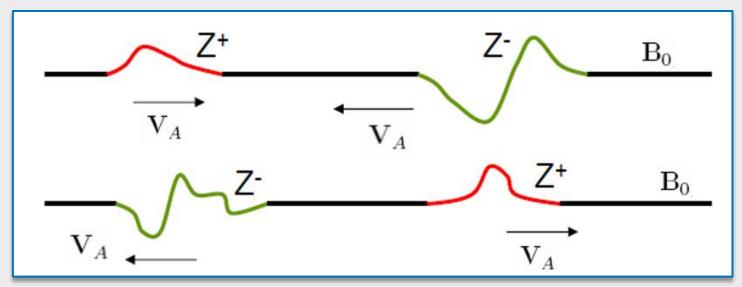
Alfv én waves propagating paralle/anti-parallel to \mathbf{B}_0 :

$$v_1 = \frac{b_1}{\sqrt{4\pi\rho}}$$

$$v_2 = -\frac{b_2}{\sqrt{4\pi\rho}}$$

Velocity and field fluctuations:

$$v = v_1 + v_2$$
$$b = b_1 + b_2$$


Els ässer variables **z**[±]:

$$z^{+} = v + \frac{b}{\sqrt{4\pi\rho}} = v_{1} + v_{2} + \frac{b_{1}}{\sqrt{4\pi\rho}} + \frac{b_{2}}{\sqrt{4\pi\rho}} = v_{1} + \frac{b_{1}}{\sqrt{4\pi\rho}}$$

$$z^{-} = v - \frac{b}{\sqrt{4\pi\rho}} = v_{1} + v_{2} - \frac{b_{1}}{\sqrt{4\pi\rho}} - \frac{b_{2}}{\sqrt{4\pi\rho}} = v_{2} - \frac{b_{2}}{\sqrt{4\pi\rho}}$$

1. Background

Theoretically: counter-propagating Alfv én waves

(Tu and Marsch, 1995; Goldstein et al., 1995; Bruno and Carbone, 2013)

- Els ässer variables (**z**[±]) are widely used to describe the solar wind turbulence.
- They are believed to represent outward and inward propagating Alfv én waves, and the nonlinear interactions between them then produce the energy cascade.

1. Background

Observationally: several components of the fluctuations in the solar wind

$$dV = dV_{w}$$

$$dB = dB_{w}$$

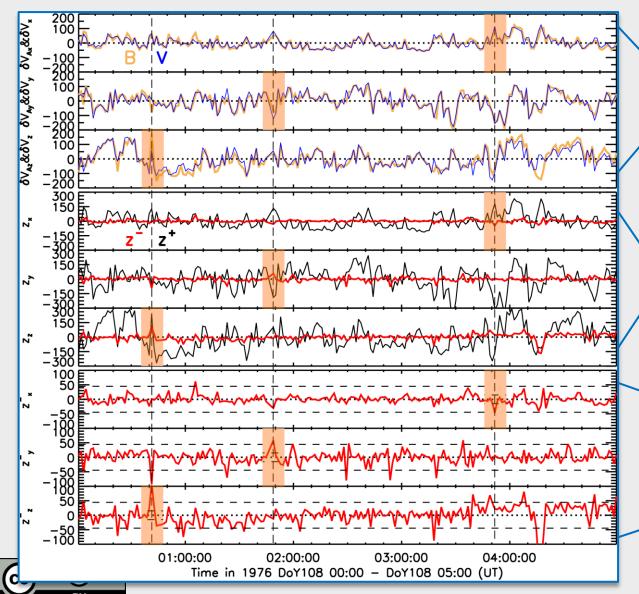
$$z^{+} = dV_{w} + dB_{w}$$

$$z^{-} = 0$$

$$dV = dV_{w}$$

$$dB = dB_{w} + dB_{s}$$

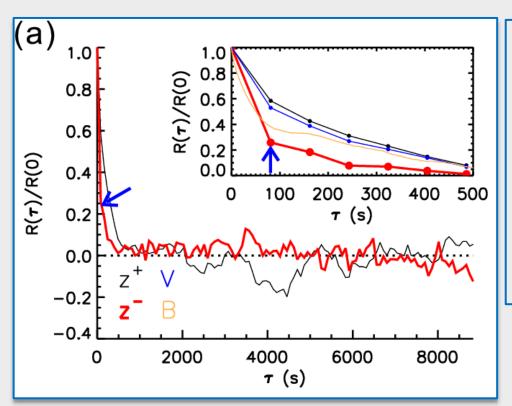
$$z^{+} = dV_{w} + dB_{w} + dB_{s}$$


$$z^{-} = -dB_{s}$$

(Tu and Marsch, 1991)

• From in situ observations, the fluctuations could be considered as a superposition of several components. Different combinations of these components may result in different natures of **z**⁻.

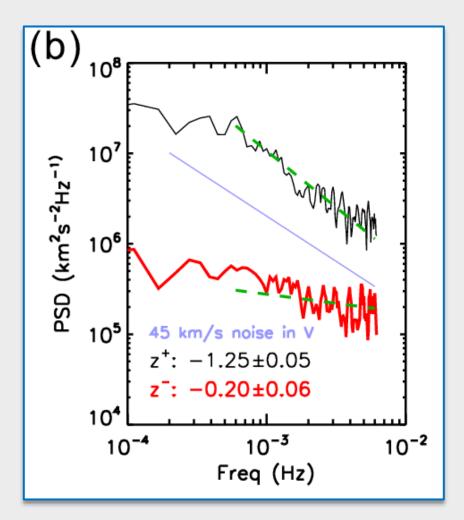
2. Observational study


Helios 2 at 0.3 AU

• High Alfv énicity $\sigma_c = 0.91$, $\gamma_A = 0.90$

• Amplitude of $\mathbf{z}^+ >> \mathbf{z}^-$

- Mostly amplitude of **z**< noise level
- Some spikes at shaded area (pseudo structures)


2. Observational study

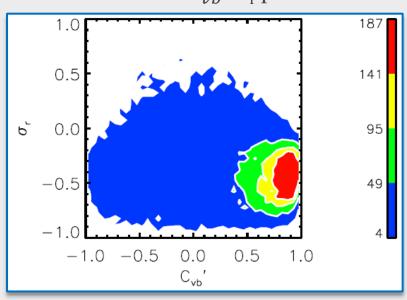
- At $\tau \approx 1000$ s, both ACFs approach 0
- ACF of z⁻ decreases significantly faster than z⁺
- Large drop at $\tau = \Delta = 81$ s for **z**
- The value of **z**⁻ at a time instant is **weakly related** to its adjacent data points, similar to white noise signal

2. Observational study

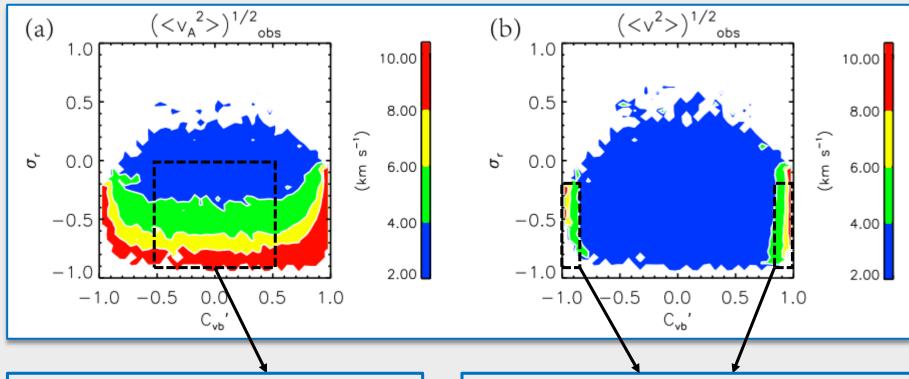
- PSD of **z**⁻ is lower than that of **z**⁺ by more than 1 order.
- **z** spectrum is as **shallow** as $f^{-0.20}$, like white noise.
- Power level of z⁻ is lower than noise.

Correlation coefficient:

$$C'_{vb} = \frac{\langle \mathbf{v} \cdot \mathbf{v_A} \rangle}{\sqrt{\langle \mathbf{v}^2 \rangle \langle \mathbf{v_A}^2 \rangle}} \cdot \frac{B_{0x}}{|B_{0x}|}$$


Normalized cross helicity:

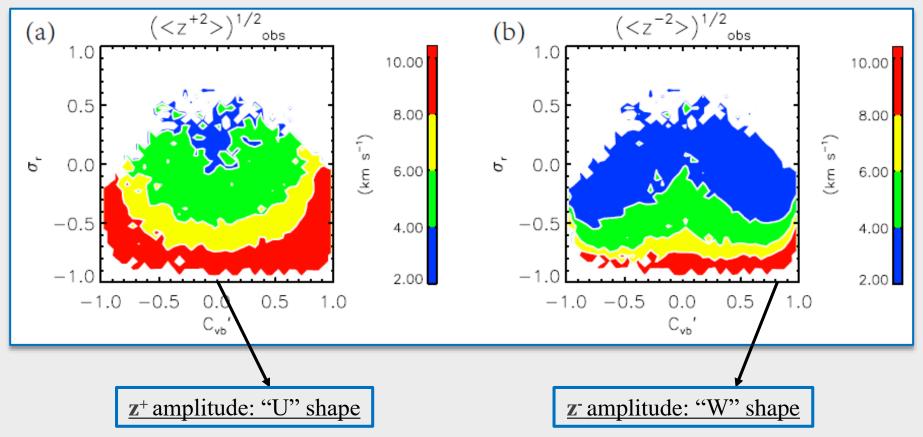
$$\sigma_r = \frac{\langle \mathbf{v}^2 \rangle - \langle \mathbf{v_A}^2 \rangle}{\langle \mathbf{v}^2 \rangle + \langle \mathbf{v_A}^2 \rangle}$$


Here, \mathbf{v} and $\mathbf{v}_{\mathbf{A}}$ are velocity and magnetic field fluctuations in Alfv $\acute{\mathbf{e}}$ n unit, respectively.

Number distribution in C'_{vb} - σ_r plane in slow wind

- WIND MFI&3DP data
- 3-s resolution
- During 2005-2009
- Each interval lasts 6min

Fluctuation amplitudes of $\mathbf{v}_{\mathbf{A}}$ and \mathbf{v} in \mathbf{C}'_{vb} - $\sigma_{\mathbf{r}}$ plane in slow wind

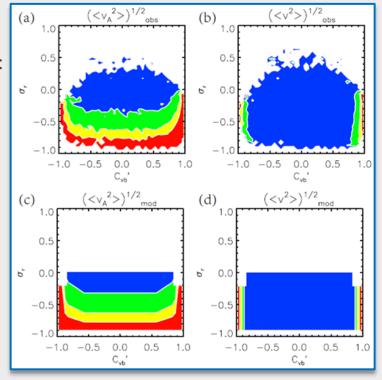


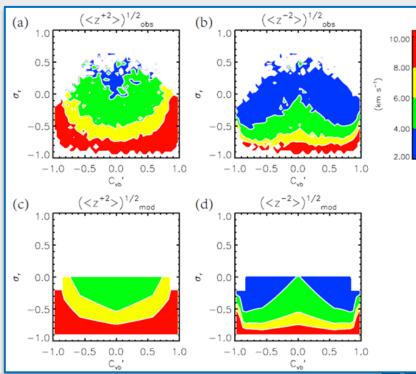
Magnetic Field Directional Turnings (MFDT) \underline{v}_A amplitude: horizontal stripe

Magnetic-Velocity Alignment Structures (MVAS) v amplitude: vertical stripe

Fluctuation amplitudes of \mathbf{z}^{\pm} in C'_{vb} - σ_{r} plane in slow wind

• Combination of MFDT and MVAS \rightarrow Different features of z^{\pm} amplitudes




An experimental model for the relation between fluctuation amplitude of \mathbf{v} (\mathbf{A}_{v}) and \mathbf{C}'_{vb} :

$$A_{v} = \begin{cases} 58.6|C'_{vb}| - 47.5, & \text{For MVAS } (|C'_{vb}| > 0.85 \text{ and } -0.9 < \sigma_{r} < -0.2) \\ 2.9, & \text{For MFDT } (|C'_{vb}| < 0.55 \text{ and } -0.9 < \sigma_{r} < 0) \\ 2.2|C'_{vb}| + 1.6, & \text{For others } (0.55 \le |C'_{vb}| \le 0.85 \text{ and } -0.9 < \sigma_{r} < 0) \end{cases}$$

•Observation:

•Model:

3. Conclusions

- In the fast wind with highly Alfv énic fluctuations, **z**⁻ is suggested to be composed of high-frequency white noise and low-frequency pseudo structures in the studied cases.
- In the slow wind, the different features of the level contours of the z[±] amplitudes could be interpreted as being attributed to the combination of MFDT and MVAS.

Thanks!

Xin Wang

wangxinpku0209@gmail.com

Wang, X., Tu, C.-Y., He, J.-S., Wang, L.-H., Yao, S., & Zhang, L. (2018). Possible noise nature of Elsässer variable **z**⁻ in highly Alfvénic solar wind fluctuations. *Journal of Geophysical Research: Space Physics*, 123. https://doi.org/10.1002/2017JA024743

Wang, X., Tu, C.-Y., & He, J.-S. (2020). Fluctuation Amplitudes of Magnetic Field Directional Turnings and Magnetic-Velocity Alignment Structures in the Solar Wind. Submitted

