

Deployment of Green roof top as a Nature Based Solution in Dublin, Ireland

Arunima Sarkar Basu, Bidroha Basu, Srikanta Sannigrahi, and Francesco Pilla

Presented by:

Arunima Sarkar Basu Architecture, Planning and Environmental Policy University College Dublin 04 May 2020

All Rights are Reserved

Significance of the work

- Increase in Hydro-meteorological events such as hurricanes, floods results in exposure to population each year.
- 1998-2018, Europe experienced 2,796 hydro-meteorological related hazards whose overall damage including overall losses and insured losses cost reached about \$720 billion.
- Massive deforestation, over-building of rural and coastal areas, modification of natural watersheds have made territories more prone to hazards.
- Research is needed to investigate the application of sustainable solutions such as Nature-Based Solutions in mitigating the effect of natural hazards.
- This study investigate an application of green roof in flood reduction using a simulation study.

SI.	Nature-Based Solutions	Co-benefits
1	Bioswales receive runoff and has vegetation and organic matter holds water, reduce infiltration and filter out pollutants.	Green infrastructure could significantly reduce heat leading to greater thermal comfort.
2	Rainwater harvesting involves collection of rainwater from roofs and hard pavement surfaces on a much larger scale.	Collected water can be used for irrigation and other household activities.
3	Tree pit systems are porous surfaces that are laid around the base of trees in urban areas. These porous systems allow water, air and nutrients to reach tree roots and thereby use evapotranspiration process to reduce stormwater runoff.	Increate amenity value of the surrounding area.
4	Attenuation tanks are used to temporarily store stormwater for a period, normally until the peak storm has passed. The water is then released to the sewer network at a controlled rate using a flow control device.	Space above the tank can be used for other purposes.
5	Infiltration trenches are excavations that are filled wit void-forming materials, typically rubble or stone, that allow temporary storage of water before it soaks into ground.	Can be constructed along pavement or parks to increase aesthetic value.
6	Green roofs are used to increase evapotranspiration and store water at the roof, leading to reduced flow from the roof to the ground via stormwater drainage system.	Has potential to reduce noise, heat, air pollution and increase aesthetic values.

Types of Nature-Based Solutions

Green Roofs Types, Structure and Importance

Soil turno	Percentage reduction	
Son type	in runoff	
Shallow soil	32.77	
(80mm)		
Medium soil	60.48	
(150mm)		

- 120 storm events at daily timescale was considered in Dublin for the simulation study
- Each event had at least 20 mm rainfall amount
- □ **Two types of soil** depths were considered in the simulation study, while sedum was selected as the vegetation
- □ Shallow extensive green roof can reduce the runoff by 32%
- □ Increase in soil depth can increase the efficiency of runoff reduction up to 60%. However, caution needs to be taken as deeper soil increases weight of the green roof considerably.