

Impacts of terracing on hydrological processes: a case study in Wangmaogou watershed of the Loess Plateau

Xiuxiu Chen

Institute of Hydrology and Water Resources, Zhejiang University

2020.04.28

Contents

Materials and methods

Results and discussion

Conclusion

1. Background

- \blacktriangleright field experiments \rightarrow numerical simulation (InHM)
- ➤ the effects of terracing practices on runoff and erosion → the redistribution of rainfall by terrace in the Loess Plateau of China (runoff + evapotranspiration + water storage)

2. Materials and methods

Study area:

a terrace in Wangmaogou (1327.95 m²)

Avaliable data: 1. soil properties

- 2. soil water content (SWC): 2015.08.01-2015.08.31, 21 nodes down to -1.6m (at 0.2m intervals, L1-L8)
- 3. rainfall data: 2015.08.10-2015.08.31 (every 5 minutes)

4. parameters for referenceevapotranspiration calculating: FAO56 Penman-Monteith formula

3.1 Measured SWC distribution characteristics

Measured SWC distribution in P3

3.2 Calibration and validation

Table 1: Parameters for the initial condition and calibrated results: soil depth (D), saturated hydraulic conductivity (Ks), soil porosity (\emptyset), parameter needed in soil moisture characteristic curve (α), parameter needed in soil moisture characteristic curve (n), and residual water content (θ_r).

Zone	Initial condition			Calibrated result		
	1	2	3	1	2	3
D (m)	0 - 0.2	0.2 - 0.4	> 0.4	0 - 0.2	0.2 - 0.4	> 0.4
K _s (m/s)	4.44×10 ⁻⁶	5.46×10-6	1.61×10 ⁻⁶	4.44×10 ⁻⁶	2.73×10 ⁻⁶	1.61×10 ⁻⁶
Ø (m ³ /m ³)	0.44	0.40	0.44	0.44	0.40	0.44
α (m ⁻¹)	1.91	1.40	1.40	1.91	1.40	1.40
n (-)	1.72	1.71	1.66	1.72	1.71	1.66
$\theta_{\rm r} ({\rm m}^{3}/{\rm m}^{3})$	0.08	0.08	0.10	0.05	0.07	0.09

3.2 Calibration and validation

Example of the comparison between observed and simulated vertical distribution of SWC at six platforms from P1 to P6 on 17th August (calibration) (a - f); and on 19th August (validation) (g - l).

3.3 Sensitivity analysis

Simulated SWC distribution characteristics after different rainfall lasted for 1h

3.3 Sensitivity analysis

Simulated soil saturation at different depth of platforms or risers under the rainfall event with largest intensity (120 mm/h): : (a) surface (0 m) of platforms, (b) D1 (0.2 m below surface) of platforms, (c) D2 (0.4 m below surface) of platforms; and (d) surface of risers.

3.4 Redistribution of rainfall by terrace on event time scale

- ➢ 21 different rainfall intensity from 5 mm/h to 180 mm/h
 (5, 10, 15, ..., 85, 90, 120, 150, 180 mm/h)
- Rainfall duration: 1h

TY: terrace with embankments TN: terrace without embankments S: slope

3.4 Redistribution of rainfall by terrace on event time scale

Simulated surface saturation level of the three topographic organizations at (a) platform (P4), and (b) riser (R4).

3.4 Redistribution of rainfall by terrace on event time scale

3.5 Embankments' influence on flow direction

pressure head distribution after 90 mm rainfall

surface flow after 90 mm rainfall

4. Conclusion

Terracing can substantially reduce runoff, especially with ridges;

By changing the flow direction, ridges prevent overflow along platforms

Evaporation is not negligible even during the rainfall events.

Xiuxiu Chen

chenxiuxiu@zju.edu.cn

2020.04.28