

Analysis on the Ability of Marine Gravity Field Recovery from Wide-swath Altimeter

Mao Zhou¹, Taoyong Jin^{1, 2}, Jiancheng Li^{1, 2}, Shengjun Zhang³, Minzhang Hu⁴

1 School of Geodesy and Geomatics, Wuhan University, Wuhan, China

2 MOE Key Laboratory of Geospace Environment and Geodesy, Wuhan University, Wuhan, China

3 School of Resources and Civil Engineering, Northeastern University, Shenyang, China

4 Institute of Seismology, China Earthquake Administration, Wuhan, China

Corresponding authors: Taoyong Jin (tyjin@sgg.whu.edu.cn)

May 6, 2020

Outline

- 1. Introduction
- 2. Data and Method
- 3. Result and Discussion
- 4. Conclusion

Introduction

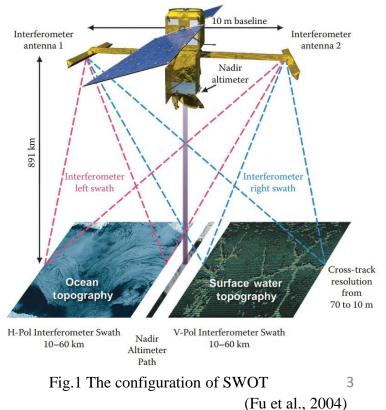
Marine gravity

- 1. The accuracy of east component of vertical deflection is significantly lower than north component
- 2. Wide-swath altimeter is expected to obtain high-precision and high-resolution twodimensional SSH measurements simultaneously, and to improve the accuracy and resolution of marine gravity field

$SWOT (\textit{Surface Water and Ocean Topography}) \\ Payload$

• Ka-band radar interferometer (KaRIn) Low-Resolution over the ocean

Resolution no coarser than 2 km

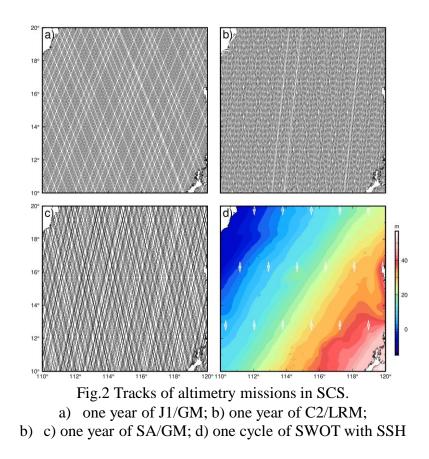

High-Resolution over land surface water

Resolution ~100m

• Jason-class nadir altimeter

Orbit

- Fast sampling orbit(~6 month) period 1 day
- Science orbit (~3 year) period 21 day


Data and Method

Data

- Tracks of SWOT, J1/GM,C2, and SA/GM
- DTU15 MSS DTU15 MDT
- EGM2008
- Six kinds of errors of SWOT

Area of Interst

- South China Sea
- (SCS, 110~120° E,10~20° N), complex seafloor, numerous islands and reefs
- Indian Ocean (IDO, 60° E~70° E, 30° S~40° S), flat seafloor

Data and Method

Method

- $\varepsilon = -\frac{\partial N}{\partial s}$
- $\varepsilon_i + v_i = \overline{\xi} \cos \alpha_i + \overline{\eta} \sin \alpha_i$ $i = 1, 2, \dots, n$
- N geoid
- s along-track distanced
- ε along-track vertical deflection
- v error
- *α* azimuth
- *n* number of along-track vertical deflection
- $\overline{\xi}, \overline{\eta}$ mean north and east components

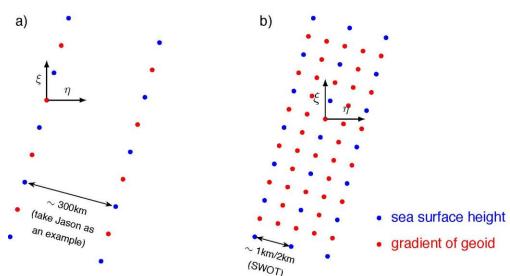
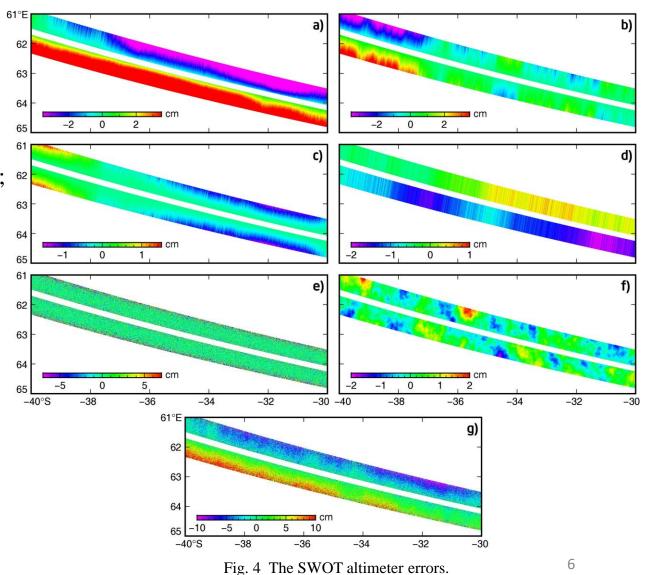
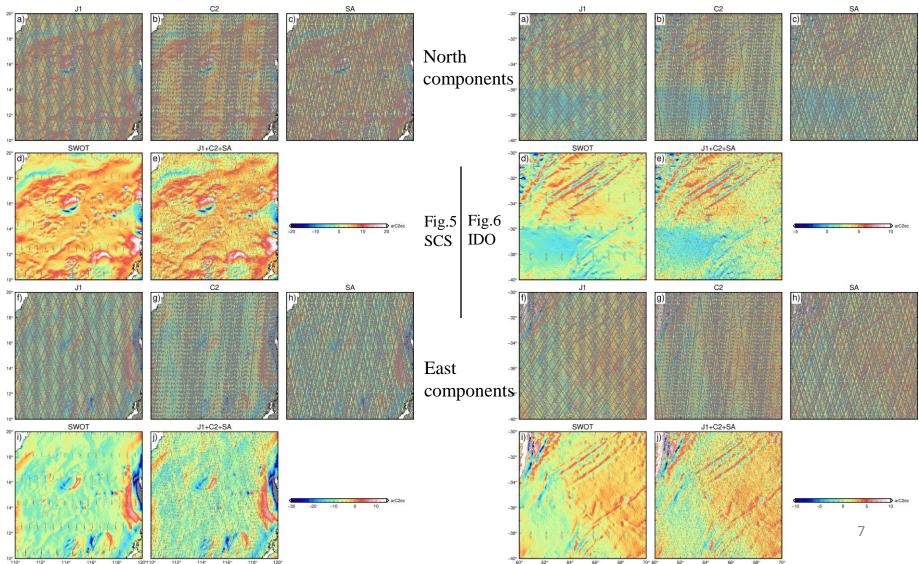



Fig. 3 Determination of geoid gradients. a) nadir altimeter; b) SWOT


Data and Method

Errors

- a) phase error;
- b) roll error;
- c) dilation error;
- d) timing error;
- e) KaRIn random error; 62
- f) residual wet troposphere error;
- g) total error

Contribution of wide-swath altimeter to vertical deflection

Contribution of wide-swath altimeter to vertical deflection

	Dataset	Valid numbers	Nor	th compo	nent	East component		
Area			Mean	STD	RMSE	Mean	STD	RMSE
	SWOT	84047	0.001	0.493	0.493	0.037	0.576	0.577
	J 1	20684	0.005	0.540	0.540	0.039	0.818	0.819
SCS	C2	21871	0.004	0.509	0.509	0.043	1.707	1.707
	SA	17767	0.003	0.521	0.521	0.032	0.989	0.989
	J1+C2+SA	74048	0.000	0.525	0.525	0.038	0.948	0.949
IDO	SWOT	88611	-0.002	0.458	0.458	0.003	0.561	0.561
	J 1	26133	-0.001	0.510	0.510	-0.001	0.705	0.705
	C2	22916	-0.001	0.477	0.477	0.002	1.522	1.522
	SA	19573	-0.001	0.480	0.480	0.005	0.867	0.867
	J1+C2+SA	79051	-0.001	0.485	0.485	0.002	0.772	0.772

Table 1. The statistics of residual vertical deflections from static SSH datasets (unit: arcsec)

- 1. SWOT has more valid grid vertical deflections than others.
- 2. Compared with EGM2008 model, the north and east vertical deflections from SWOT are the most consistent, even better than combing dataset.

Effect of KaRIn errors on vertical deflection

Area	Error	Nor	th compo	nent	East component			
		Mean	STD	RMSE	Mean	STD	RMSE	
	No error	0.001	0.604	0.604	0.036	0.704	0.705	
SCS	Error	0.004	2.596	2.596	0.003	2.565	2.565	
	Error filter	-0.003	0.632	0.632	0.057	0.733	0.736	
	No error	-0.002	0.570	0.570	0.003	0.692	0.692	
IDO	Error	-0.010	2.474	2.474	0.030	2.622	2.622	
	Error filter	0.010	0.593	0.593	-0.026	0.720	0.720	

Table 2. The statistics of residual vertical deflections from SWOT data with errors (unit: arcsec)

- 1. The error affect significantly on the vertical deflections.
- 2. After Gauss filtering, the error is reduced to the comparable magnitude of that when only static SSH data is used.

Effect of KaRIn errors on vertical deflection

A	Dana	Noi	th compo	nent	East component			
Area	Errors	Mean	STD	RMSE	Mean	STD	RMSE	
	No error	0.001	0.604	0.604	0.036	0.704	0.705	
	Phase	0.004	0.709	0.709	0.058	0.716	0.718	
909	Roll	-0.002	0.650	0.650	0.057	0.711	0.713	
SCS	Dilation	0.001	0.614	0.614	0.036	0.703	0.704	
	Random	0.005	2.556	2.556	0.038	2.543	2.544	
	Total	0.004	2.596	2.596	0.003	2.565	2.565	
	No error	-0.002	0.570	0.570	0.003	0.692	0.692	
	Phase	0.005	0.653	0.653	0.025	0.705	0.705	
IDO	Roll	0.002	0.606	0.606	0.034	0.700	0.701	
IDO	Dilation	-0.001	0.576	0.576	0.003	0.691	0.691	
	Random	-0.003	2.445	2.445	-0.000	2.608	2.608	
	Total	-0.010	2.474	2.474	0.031	2.622	2.622	

Table 3. The statistics of residual vertical deflections with different errors (unit: arcsec)

1. The magnitude of Karin random error is larger than other errors and has great effect on height error, followed by the phase error, roll error and dilation error.

Effect of SSH resolution in swath on vertical deflection

Area	Error / Resolution	Nor	th compo	nent	East component		
	EITOF / Resolution	Mean	STD	RMSE	Mean	STD	RMSE
	No error / 1km	0.001	0.604	0.604	0.036	0.704	0.705
	Error / 1km	0.004	2.596	2.596	0.003	2.565	2.565
CCC	Error filter / 1km	-0.003	0.632	0.632	0.057	0.733	0.736
SCS	No error / 2 km	0.000	0.556	0.556	0.036	0.648	0.649
	Error / 2 km	-0.002	0.851	0.851	0.035	0.885	0.886
	Error filter / 2 km	0.005	0.567	0.567	-0.039	0.665	0.667
IDO	No error / 1km	-0.002	0.570	0.570	0.003	0.692	0.692
	Error / 1km	-0.010	2.474	2.474	0.031	2.622	2.622
	Error filter / 1km	0.010	0.593	0.593	-0.026	0.720	0.720
	No error / 2 km	-0.002	0.515	0.515	0.002	0.629	0.629
	Error / 2 km	0.008	0.773	0.773	-0.012	0.849	0.849
	Error filter / 2 km	-0.022	0.526	0.527	-0.026	0.653	0.654

 Table 4. The statistics of residual vertical deflections from SWOT data with different resolutions and errors (unit: arcsec)

1. Under the requirement of 1 min resolution marine gravity field recovery, the 2 km SSH product is more suitable and can greatly reduce the quantity of SSH data.

Conclusion

- 1. Without errors, the accuracy of vertical deflections derived from about 21 days of SWOT data is certified to be better than that from one year of any conventional nadir altimeter data, and even better than that from three years of combing nadir altimeter data.
- 2. The SWOT data improves the accuracy of east vertical deflection significantly to the comparable magnitude of north vertical deflection.
- 3. The effect of KaRIn random noise is the largest, but can be reduced by filtering, followed by the phase error, roll error and dilation error.
- 4. The accuracy of SSH measurements is inversely proportional to the spatial resolution. The 2 km resolution of SSH can fulfil the requirement of 1 min resolution marine gravity field. After filtering, higher than 1 min resolution marine gravity field could be achieved with SWOT data.

Thanks