Detection of alkyl nitrates (ANs) and peroxyacyl nitrates (PNs) by a TD-CEAS (thermal dissociation - cavity enhanced absorption spectrometer) system

Chunmeng Li, Haichao Wang, Keding Lu

State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and

Engineering, Peking University,

Beijing, 100871, China.

Contents

1. Introduction

2. Characterization of the CEAS for NO₂ detection

3. Characterization of the TD-CEAS

- 4. Field observations
- **5.** Conclusions

1. Introduction

- Organic nitrates (ONs)
 include PNs (RCO₃NO₂)
 & ANs (RONO₂);
- The formation of ONs is initiated by O₃, OH and NO₃;
- ONs can be very useful indicators for the kinetic regime determination and mechanism development;
- ONs have an effect on the formation of O₃;
 ONs are the important

precursors of SOA.

2. Characterization of the Cavity Enhanced Absorption Spectrometer

 NO_2 has distinct absorption peaks at 300-500 nm, so a single-colour LED centered at 450nm is used as the light source.

Lambert Beer's law: $\log\left(\frac{I_0}{I}\right) = \sigma \times L \times C$ Cavity technology to increase the optical path.---L

$$\alpha(\lambda) = \left(\frac{I_0(\lambda)}{I(\lambda)} - 1\right) \left(\frac{1 - R(\lambda)}{d_{\text{eff}}}\right) = \sum_i n_i \times \sigma_i(\lambda) + \alpha_{\text{Mie}}(\lambda) + \alpha_{\text{Rayl}}(\lambda)$$

(extinction coefficient)

(Mie scattering)(Rayleigh scattering)

3. TD-CEAS characterization — Efficiency of Thermal Dissociation

Relative Signal

Photochemical source: PAN in zero air are generated by acetone

photolysis at 285 nm in the presence of O_2 and NO.

 $CH_3COCH_3 + hv \rightarrow CH_3CO + CH_3$ $CH_3CO + O_2 \rightarrow CH_3COO_2$

 $CH_3COO_2 + NO_2 \rightarrow PAN$

PAN:MeN=2:1. Fused silica
 enclosure to house Hg lamp does
 not attenuate the output in the
 near-UV, which promotes further
 reactions of CH₃ to generate
 methyl nitrate (MeN).

Reactor wall temperature (°C)

 Normalized TD signals of thermal dissociation of standard source based on the total concentration of ONs.

3. TD-CEAS characterization — Efficiency of Thermal Dissociation

Reactor wall temperature [°C]

- At 180 °C, PAN (blue line) is completely pyrolyzed and MeN is not pyrolyzed at all. ANs (red line) is pyrolyzed totally when the temperature is above 360 °C.
- Quartz tubes to measure PNs/ANs are heated at 180 °C/ 380 °C, which is similar to previous pyrolysis temperature.

 (\mathbf{i})

ΒY

CC

- ➤ Instrument: 110cm x 60cm x 50cm, ~300w;
- Sample gas: 2.4 L/min;
- > Detection limit and time resolution: $1\sigma = 97$ pptv, time resolution = 6 s
- \blacktriangleright Reflectivity: N₂ and He

ΒY

$$R(\lambda) = 1 - d \times \left(\frac{I_{N_{2}}(\lambda) \times n_{N_{2}} \times \sigma_{Rayl,N_{2}}(\lambda) - I_{He}(\lambda) \times n_{He} \times \sigma_{Rayl,He}(\lambda)}{I_{He}(\lambda) - I_{N_{2}}(\lambda)}\right)$$

ΒY

- > Purge gas to prevent the HR mirrors from pollution: 100 sccm \times 2;
- \succ d_{eff}: the effective cavity length due to the purge gas;
- Experiment in Lab: determination of $[NO_2]$ under two conditions with or without purge in the cavity by using the same NO₂ stand source(\approx 130 ppbv).

 $d_{eff} / L = [NO_2]_{with} / [NO_2]_{without}$

- One CEAS is used to detect;
- Multiple components (solenoid value, T-shaped tee) aim to achieve alternate measurement;
- ➤ Airflow is stable in 3 channels.

Ú By

- One measurement cycle for 3 min, including 3 measurement phases;
- ➤ Time resolution: 6 s;
- red dots: [ANs]+[PNs]+[NO₂], blue dots: [PNs]+[NO₂], black dots: [NO₂]

 According to the spectral fitting of CEAS, [ANs] and [PNs] can be determined by two methods;

'CONC' method:
$$α_{TD380} = \left(\frac{I_{TD380}}{I_{N_2}} - 1\right) \left(\frac{1 - R(\lambda)}{d_{eff}}\right)$$

$$α_{TD180} = \left(\frac{I_{TD180}}{I_{N_2}} - 1\right) \left(\frac{1 - R(\lambda)}{d_{eff}}\right)$$

▹ 'SPEC' method:

$$\alpha_{[ANS]} = \left(\frac{l_{TD380}}{l_{TD180}} - 1\right) \left(\frac{1 - R(\lambda)}{d_{eff}}\right)$$
$$\alpha_{[PNS]} = \left(\frac{l_{TD180}}{l_{NOR}} - 1\right) \left(\frac{1 - R(\lambda)}{d_{eff}}\right)$$

• The data is the measurement results of CHOOSE campaign on September 8, 2019.

Comparison to other ANs/PNs instrument

Tech	Measuring Parameter	Measure species	Calibration	Temporal/ Spatial resolution	DL	Accuracy	Main interference	Ref
			PAN/ethyl nitrate/n-					
TD_I IF	Fluorescence	ANS PNS NO	propyl nitrate/NO ₂	10 s	90 ppty	10-15%	Thermal	Day et al. 2002
ID-LII	spectrum	Allos, I los, 100_2	standard source	10.8	90 pptv	10-13 %	Acetone, acetic	Day et al., 2002
		PiBN, PAN, PPN	PAN/MPAN/PPN				acid, peracetic	
TD-CIMS	Mass spectrum	, MPAN	standard source	1-15 s	3-7 pptv	20%	acid	Slusher et al., 2004
			PAN/PPN/methyl,					
			ethyl, isopropyl,					
			nitrates/NO ₂				Thermal	
TD-CAPS	Phase shift	ANs, PNs, NO ₂	standard source	2 min	21 pptv		interference	Sadanaga et al., 2016
			2-propyl nitrate/PAN/NO ₂			6%+20 pptv +(20pptv*RH	Thermal interference,	
TD-CRDS	Ring-down time	ANs, PNs, NO ₂	standard source	1 s	28 pptv,	/100)	RH	Thieser et al., 2016
			2-propyl nitrate/i-butyl nitrate/PAN/NO ₂		80 pptv, 94 pptv,		Thermal	
TD-CRDS	Ring-down time	ANs, PNs, NO_2	standard source	1 s	59 pptv	8%	interference	Sobanski et al., 2016
TD-PERCA-			NO ₂ /PAN				Thermal	
CRDS	Ring-down time	PNs	standard source	1 s	2.6 pptv	9%	interference	Taha et al., 2018
	Absorption		PAN /MeN				Thermal	
TD-CEAS	spectrum	ANs, PNs, NO ₂	standard source	6 s	97pptv	8%	interference	This study

4. Field observations

- The first field observation named CHOOSE was deployed in XINJIN, Chengdu, China, in 2019;
- An example time series of [NO₂], [PNs] and [ANs] measured during an ozone pollution in CHOOSE campaign.

Field intercomparison of NO₂ and PAN

Diurnal variations

- [ANs] / [PNs] had peak
 during the day, [ANs]
 at 11am , [PNs] at
 - 12am;
- The high value of [ANs]
 lasted longer during the day than [PNs];
 [NO₂] kept high concentration at nigh,
 - and started to fall at

8am.

The limitations of the current single channel TD-CEAS

- [NO₂] shows irregular jitters at night, and the corresponding [PNs] and [ANs] had larger errors;
 [NO₂], [PNs] and [ANs] all had small jitter during the day;
- when the [NO₂] change drastically, the difference in [NO₂] between adjacent measurement phases in a cycle will be large, resulting in larger errors.
- The data is the measurement results of CHOOSE campaign on August 15, 2019.

5. Conclusion

- ➤ A single channel TD-CEAS system is successfully developed for the selective measurement of NO₂, ANs and PNs sequentially.
- The instrument can be calibrated and characterized with a conventional PAN calibration source which contains both PAN and MeN.
- During its field deployment, the measured NO₂ and PNs showed good agreement with the corresponding observed values from CLD and GC-ECD, respectively.
- More characterization are still required to account the influence of the side reactions which take place at the thermal dissociation tube.

THANK YOU!

