DEFORMATION TIMING AND STRAIN IN NEOPROTEROZOIC STRATA, JEBEL AKHDAR, NORTHERN OMAN

Christopher M. Bailey, Claire Rae, William & Mary Ryan McAleer, U.S Geological Survey

Arabian Plate

Logios Mins.

African Plate

<mark>Go</mark>ogle Eart

US Dept of State Geographer © 2018 Google Image Landsat / Copernicus Data SIO, NOAA, U.S. Navy, NGA

Eurasian Plate

Makran Subduction Zone

Indian Plate

Arabian Gulf

0

UAE

0

0

SAUDI ARABIA

Google Earth

US Dept of State Geographer Image Landsat / Copernicus Data SIO, NOAA, U.S. Navy, NGA, GEBCO

IRAN

JOREB OF

Muscat

Rock Type

Oceanic crust: oceanic sediment, pillow basalts, sheeted dike complex, and both layered and isotropic gabbro.

Moho: seismic discontinuity and petrologic transition zone between

Mantle: predominantly harzburgites and dunites with varying levels

Autochthonous Sequence

CAMB.		Ara Group	Ara Group	Ara Cycles		δ ¹³ C Miqrat well Burns et al. (1993)
NEOPROZENC	HUQF SUPERGROUP	Abu Mahara Group	Nafun Group	Buah Fm		-6 0 6
				Shuram Fm		
				Khufai Fm		
				Masirah Bay Fm		
				Hadash Fm		
			Abu Mahara Group	Ghadir Manqil Formation	Fiq Member	Fiq Formation
					Saqlah Member	Saqlah Formation
				Ghubrah Formation		Ghubrah Formation

Diamictites Galore

The Bay

Pencil Structure

RESEARCH GOALS

1. Quantify the three-dimensional finite strain and vorticity in deformed rocks of the Ghubrah and Fig formations in order to understand the regional kinematic history

2. Determine the physical conditions and timing of deformation, as well as its relationship to the orogenic history of northern Oman.

METHODS

Field mapping, structural analysis, strain + vorticity analysis, petrologic analysis, and Ar/Ar geochronology

Ghubrah Bowl, northern Oman

ophiolite

Cryogenian

strata

oblique aerial view to the north (photo by Éva Rosta)

Batinah Coastal Plain

Permian-Cretaceous strata

Cryogenian strata

Permian-Cretaceous strata

Cross sections of the Ghubrah Bowl

elongation lineation

lineation typically plunges

Duckbill Structure

10 cm

Panite Clast

Double Duckbill Structures

Sandstone clast

5 cm

DUCKBILL mineralogy

sericite,
quartz,
± calcite
t chlorite

Rf-phi Strain Analysis

Rf-phi Strain Analysis

'Average' strain in diamictites

X/Z ratios: 3.0 to 1.8 narrow range in Y/Z space

Apparent Flattening Strain (k = 0.2 - 0.9)

'Average' strain in diamictites

X/Z ratios: 3.0 to 1.8 narrow range in Y/Z space

Apparent Flattening Strain (k = 0.2 - 0.9)

Finite Strain Results North/South elongation subvertical shortening

Vorticity Analysis

When present: Top-to-the-South asymmetry Symmetric structures dominant Back-rotated clasts at high-angle to foliation **PURE SHEAR Dominated** $(W_m = 0.1 - 0.4)$

Back-rotated clast

Geochronology Ar/Ar analysis @ US Geological Survey drilled out matrix, duckbills, + clasts

USGS 10.0mm x150 BSE-ALL 10/29/2019

USGS 10.0mm x100 BSE-ALL 10/29/2019

300µm USGS 10.0mm x150 UVD 10/29/2019

12

307

'300µm '

muscovite growing below closure T this is messy business! syntectonic growth @ ≤90 Ma

Contents lists available at ScienceDirect

2017

Marine and Petroleum Geology

journal homepage: www.elsevier.com/locate/marpetgeo

Research paper

Estimating original thickness and extent of the Semail Ophiolite in the eastern Oman Mountains by paleothermal indicators

L. Aldega^{a, *}, E. Carminati^a, A. Scharf^b, F. Mattern^b, M. Al-Wardi^b

^a Dipartimento di Scienze della Terra, Sapienza Università di Roma, Rome, Italy ^b Earth Science Department, Sultan Qaboos University, Muscat, Oman

1D thermal modeling indicates that the sub-ophiolite units of Jebel Akhdar were overthrust by 4.5 km-thick Samail Ophiolite and Hawasina units in the late Cretaceous

Depth (m)

CONCLUSIONS

Cryogenian diamictites in northern Oman experienced: moderate 'whole rock' strain that involved north-south elongation and subvertical shortening with significant strain partitioning

Deformation occurred under *chlorite-grade conditions Argon geochronology* is messy with mixed ages, but syntectonic muscovite grew after ~90 Ma

Deformation is associated with *southward emplacement* and *loading* by the Oman ophiolite & Hawasina Group over the autochthonous sequence

