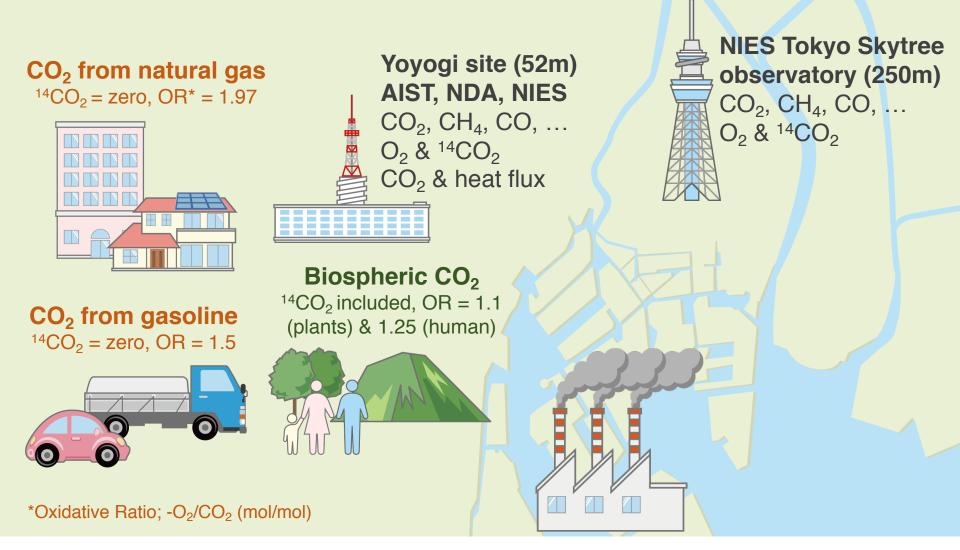
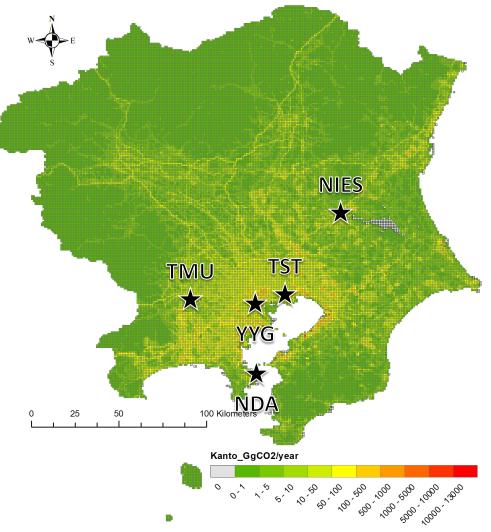
Atmospheric observations of CO_2 , ¹⁴ CO_2 and O_2 concentrations to capture fossil fuel CO_2 emissions from the Greater Tokyo Area

<u>Yukio Terao</u>¹ (¹⁴CO₂ and CO₂/CH₄/CO at TST, YYG, NIES and NDA) Yasunori Tohjima¹ (O₂ and CO₂ at TST and NIES) Shigeyuki Ishidoya² (O₂ and CO₂ at YYG) Mai Ouchi¹, Yumi Osonoi¹, Hitoshi Mukai¹, Toshinobu Machida¹ (¹⁴C, NIES lab., TST) Hirofumi Sugawara³ (CO₂ flux at YYG, CO₂/CH₄/CO at NDA) Naoki Kaneyasu² (aerosol component at YYG) Yosuke Niwa¹ (NICAM atmospheric transport model)


¹ National Institute for Environmental Studies (NIES), Japan (yterao@nies.go.jp)
² National Institute of Advanced Industrial Science and Technology (AIST), Japan
³ Department of Earth and Ocean Science, National Defense Academy (NDA), Japan

Fund/support: The Environment Research and Technology Development Fund (1-1909), JSPS KAKENHI Grant Number 18K01129, the Ministry of the Environment, Japan and the NIES GOSAT-2 project.


Points:

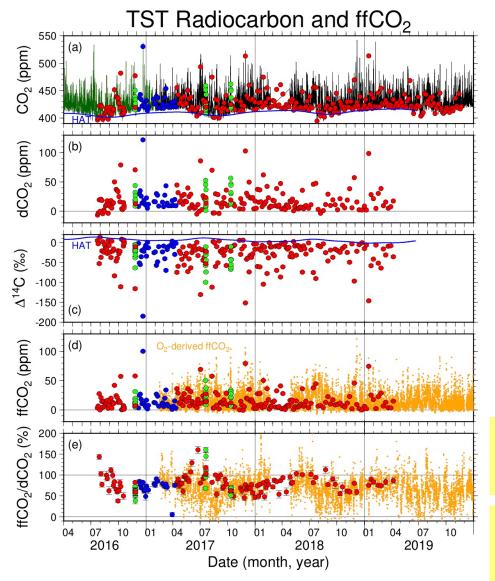
- ✓ We have performed ground-based atmospheric observations for measuring concentrations of CO₂, ¹⁴CO₂ and O₂ in the Greater Tokyo Area.
- ✓ The ¹⁴CO₂ measurement was used for separating the fossil fuel CO₂ emissions from the biotic emissions. The O₂:CO₂ exchange ratio (oxidation ratio, OR) was used for the partitioning of CO₂ into emissions from gas fuels and gasoline.
- ✓ Results from ¹⁴CO₂ measurements showed that a ratio of fossil fuel-derived CO₂ to the variation of CO₂ concentrations was 71% (TST) and 73% (YYG) in average for winter but varied from 44% to 92%, indicating significant contribution of biotic CO₂ in Tokyo.
- ✓ Results from OR showed larger OR in winter than in summer (due to both wintertime increases of fossil fuel combustion and summertime terrestrial biospheric activities) at TST and YYG and larger OR in the morning and late evening in winter due to increase of gas fuel combustion at YYG.
- ✓ Our colleague developed building/road-scale dynamic CO₂ mapping and gridbased high spatial resolution CO₂ emission inventory in Tokyo.

$^{14}CO_2$ and O_2 observations to capture fossil fuel CO_2 emissions

Atmospheric Observations in the Greater Tokyo Area

Tokyo SkyTree (TST)	Sumida, Tokyo	Continuous CO_2 , CH ₄ , CO and O ₂ Flask (¹⁴ CO ₂)
Yoyogi (YYG)	Shibuya, Tokyo	Continuous CO_2 , CH ₄ , CO and O ₂ Flask (¹⁴ CO ₂) CO ₂ flux, aerosol
NDA	Yokosuka, Kanagawa	Continuous CO_2 , CH_4 , CO
NIES	Tsukuba, Ibaraki	Continuous CO_2 , CH ₄ , CO and O ₂ Flask (¹⁴ CO ₂)
Tokyo Metropolitan Univ. (TMU)	Hachioji, Tokyo	Continuous CO ₂

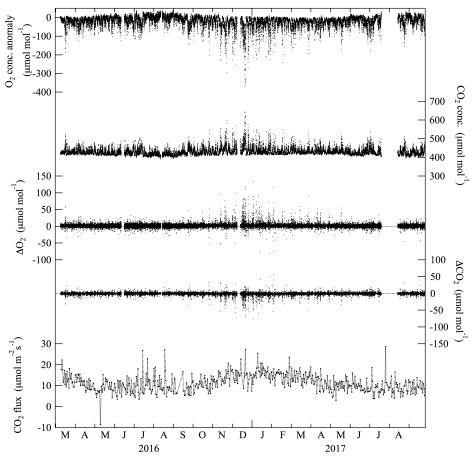
Location of atmospheric observation sites in the Greater Tokyo Area. Color map shows a 1km mesh CO_2 emission data in 2005 (updated from Cong et al., CBM, in review).


Atmospheric Observations at TST and YYG

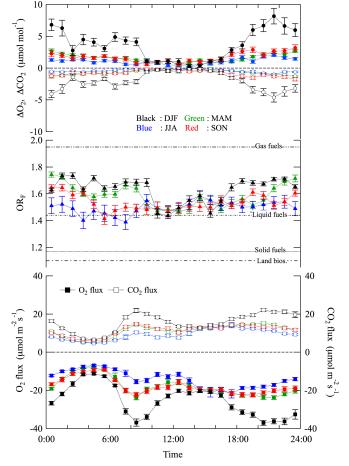
	Tokyo SkyTree (TST)	Tokai University, Yoyogi (YYG)	
CO ₂ ,CH ₄ ,CO	CRDS (Picarro G2401)		
O ₂ & CO ₂	Fuel cell O ₂ analyzer (Oxzilla II) and NDIR (LI-840A) (Hoshina et al., 2018)	Paramagnetic O ₂ analyzer (POM-6E) and NDIR (LI-820) (Ishidoya et al., 2017)	
¹⁴ CO ₂	Flask sampling of whole air (every 4-day). ¹⁴ C analysis by NIES-CAMS.		
CO ₂ flux	N/A	Sonic anemometer (WindMasterPro) and open-path NDIR (LI-7500) (Hirano et al., 2015)	
Aerosol	N/A	XRF analyzer (PX-375) (Kaneyasu et al., 2020)	

Terao et al., Observation of CO_2 , ¹⁴ CO_2 and O_2 in Tokyo, EGU2020

Fossil fuel CO₂ estimated from ¹⁴CO₂ and O₂ at TST

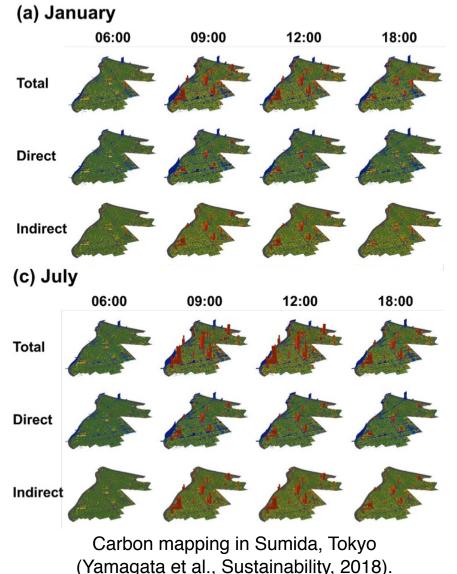


(a) CO_2 mole fraction Continuous (line) and flask (circles) measurements (14 p.m. or 20 p.m. LT) Background (Hateruma Island) (curve) (b) CO₂ increase from background (Δ CO₂) (c) Δ^{14} C in CO₂ $\Delta^{14}C = \delta^{14}C - 2(\delta^{13}C + 25)(1 + \delta^{14}C/1000)$ (d) CO_2 from fossil fuel combustion (CO_2^{ff}) derived from Δ^{14} C (red/blue circles) $CO_2^{ff} = CO_2^{obs} (\Delta^{14}C^{bg} - \Delta^{14}C^{obs}) / (\Delta^{14}C^{bg} + 1000)$ and from O_2 (orange dots) $CO_2^{ff} = (\Delta O_2 + \alpha_{bio} \cdot \Delta CO_2)/(\alpha_{bio} - \alpha_{ff})$ ΔO_2 and ΔCO_2 : change from baseline α_{bio} : Oxidative ratio for biosphere (1.05 ± 0.05) $\alpha_{\rm ff}$: Oxidative ratio for fossil fuel combustion from inventory (1.68 ± 0.03) (e) $CO_2^{\text{ff}} / \Delta CO_2$

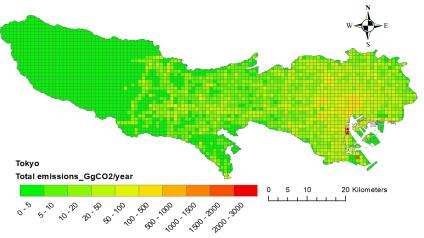

 Δ^{14} C-derived CO₂^{ff} was 71% in Δ CO2 for winter, indicating significant contribution of biotic CO₂ in Tokyo. (Δ^{14} C method doesn't work well in summer)

 O_2 might be used as a proxy for continuous monitoring of fossil fuel CO_2 content by assuming typical ratio of gas fuels and gasoline combustions.

Oxidative Ratio for net turbulent flux observed at YYG (Ishidoya et al., ACPD, 2019)



Time series of O_2 and CO_2 concentrations observed at 52 m, ΔO_2 and ΔCO_2 (52 m minus 37 m), and daily mean CO_2 fluxes observed using the eddy correlation method at YYG.


Average diurnal cycles of ΔO_2 and ΔCO_2 for each season: December to February (back), March to May (green), June to August (blue) and September to November (red).

Development of emission inventory in Tokyo

← Building/road-scale dynamic CO₂ mapping developed by Y. Yamagata, T. Yoshida and D. Murakami (NIES)

 \downarrow Grid-based high spatial resolution CO₂ emission inventory developed by R. Cong, M. Saito, A. Ito (NIES) and T. Oda (NASA)

CO₂ emission data (1 km mesh) in Tokyo in 2005 (Cong et al., CBM, in review).

Terao et al., Observation of CO₂, ¹⁴CO₂ and O₂ in Tokyo, EGU2020