Landslide Characteristics and Societal Impacts of Roadside Towns along Sino-Nepal Transportation Corridor A Case of Kathmandu-Kyirong Highway

Susmita Dhakal

Institute of Mountain Hazards and Environment, Chinese Academy of Sciences

Central Department of Environmental Sciences, Tribhuvan University

Peng Cui, Li-jun Su

Institute of Mountain Hazards and Environment, Chinese Academy of Sciences

Chandra Prasad Rijal

Tourism Search and Rescue Guidance Committee, Government of Nepal

Biren G.C., Anil Regmi

Central Department of Geology, Tribhuvan University

EGU 4-8 May, 2020 Vienna Abstract: EGU 2020-12372 NH3.10

Overview

- □Kathmandu Kyirong highway (KKH) is a strategic motorway built in the terrain of high tectonic and river incision belt, weak geological settings, and extreme monsoonal climate system
- ☐ It suffers from frequent landslide hazard annually

Landslide characteristics

Period	Nr.	Density/ha	Area (ha)			
			Min	Max	Mean	Total
2004.0.11	604					
2004 &older	694	0.383	0.003	110.139	0.928	643.691
2005-2009/2010	510	0.339	0.017	44.167	1.119	570.765
2011-2014	413	0.177	0.010	54.989	0.723	298.553
2015	1934	0.637	0.004	12.656	0.554	1071.463
2016	498	0.161	0.010	26.093	0.547	271.628
2017 &2018	528	0.186	0.004	31.215	0.591	312.152
Total	4,577					3,168.252

Continuously active area more than two periods is 626.5 ha

Landslide characteristics

Landslides number and density (nr/km²) in different sections of the highway corridor

P1: 2004 &older

P2: 2009/2010

P3: 2014

P4: 2015

P5: 2016

P6: 2017/2018

Landslide characteristics

Landslide and causative factors

Landslides are

- ☐ increased with incremental slope and relative relief
- □ more in late Paleozoic and pre-Cambrian lithological formations
- ☐ more in southern slope aspect
- ☐ more in grass lands, bushes and barren lands
- ☐ more closer to earthquake epicenters as well as streams
- more in 2000 -2500 mm rain zone (pre-quake) and more in dry steep slopes (co-seismic)
- more in the area far from roads; it is because most of the roads are in urban and sub-urban flat locations

Slope aspect

Annual normal rainfall

Societal Impacts

Eight roadside towns, n=296)

Six major sectors

are highly impacted
transportation, price
hike, and shortage of
stuffs

Livelihood options agriculture, and tourism
and private business

Coping mechanism

Local residents are smart enough to cope with the hardship that brings by slope instability

The mechanism of coping are:

- One way transportation and walk in damaged area
- Carry goods by foot from nearby market
- Mentally prepare to reach nearby workplaces by walking
- ☐ Keep stock of goods at home
- ☐ Use savings to buy expensive stuffs in local market
- ☐ Helicopter lifting during emergency

Summary

- ☐ Mass failure is **common hazard** along Kathmandu Kyirong highway corridor
- ☐ Slope angle, relative elevation, slope aspect, lithology, land cover, stream and epicenter proximity, and rainfall have remarkable influence on mass failure
- □ landslides have remarkable impact not only on road condition but also on livelihood of roadside residents
- □ Locals are aware of the devastation that comes with mass failure, thus acceptable risk is high
- ☐ People are **resilient** though they have very limited resources

Thank you