

EGU 2020 online conference Session ITS5.7/CL2.14

"Climate change effects in the UK shelf sea's connectivity and hydrographic properties"

© C. G. (Gaby) Mayorga Adame^{1*}, James Harle¹, James Harle¹, Sarah Wakelin¹, Yuri Artioli², Vincent Rossi³, Enrico Ser-Giacomi

Making Sense of Changing Seas

noc.ac.uk

© The authors retain all rights. This material is only intended for the EGU audience and should not be reproduced.

Resolving Climate Impacts on shelf and CoastaL sea Ecosystems (ReCICLE)

 Exploring potential climate impacts on marine ecosystems, including the effects of fine-scale physical processes, non-linear ecosystem interactions and an assessment of the range of likely impacts.

3D regional ocean circulation model NEMO-AMM7

National Oceanography Centre

Resolving Climate Impacts on shelf and CoastaL sea Ecosystems (ReCICLE)

Resolving Climate Impacts on shelf and CoastaL sea Ecosystems (ReCICLE)

Research Questions:

Is the ecosystem an amplifier or suppressor of the climate change signal?
 i.e. do the Key Intermediate Services (KIS; PP, oxygen uptake, nutrient cycling, biological control, and pelagic habitat) respond antagonistically or synergistically to the combination of external climatic drivers?

• What is the range of response of each KIS given likely future climate change scenarios?

The Ensemble Members

 Uncertainty due to Climate Change scenarios → ocean circulation, temperature, salinity

- Biochemical model uncertainty \rightarrow
 - Parametrization and ecosystem complexity

... Modeled connectivity uncertainty: Sensitivity to ocean models and biological assumptions

Climate change effects on Physical Processes and Ecosystems

Changes in ocean physics will have important effects on the marine ecosystems, particularly on **nutrients re-supply** and **species connectivity.**

The planktonic larval stage allows colonization of new habitat and genetically diverse populations which foster **resilience** to climate change.

Climate change effects on connectivity

Climate Change Impact	Process	Effect on Connectivity
Temperature increase	Shorter larval durations. More expensive metabolism.	Udispersal, Ulong range connectivity
Salinity changes	Vertical migrations of some larvae (oysters, clams, etc) responds to haloclines to stay locked to the tidal phase and minimaze dispersal.	↓ retention, disperse away from reef habitat
pH changes	Ocean acidification difficults the formation of bivalves 1st shell. Incresed mortality. Migration towards shallow waters.	Forced migration away from prefered habitat,
Change in coastal currents	Spawning time and location are tuned to circulation patterns that promote dispersal to specific habitats.	îu↓connectivity
Increased stratification	Larvae migrate vertically to take advantage of baroclinic currents. Slower deep currents maybe harder to reach.	Î dispersal, Î ↓connectivity

Particle tracking experiments set up

- Past (2000 2010) vs. Future (2040 2050)
- Warmest ensemble member: HadGem2-ES
- Uniformly seeded North Sea
- Passive particles, advection only, daily surface currents.
- Seasonal releases: Jan, Apr, Jul, Oct (40 per decade)
- Tracked for 30 days
- 11510 particles per release
- 448 890 per decade

Variability among ensemble members

Δ (future – past) Potential Energy Anomaly

Variability among ensemble members

Variability among ensemble members

Linear Dispersal Distance HadGEM2-ES

- No significant difference in dispersal distance mode ~75km.
- Broader spread on dispersal distance in the future.

Connectivity Changes HadGem2-ES

Ocean Provinces based on Lagrangian Flow Networks

Following Monroy et al., 2017 methodology

Question

- More detailed analysis: at finer resolution and using network metrics.
- More particle tracking experiments with other ensemble members.
- Along track environmental variability (temperature, salinity, pH, phytoplankton, zooplankton).
- Investigate changes in oceanographic barriers to dispersal, define ocean provinces.
- Scale of uncertainty due to climate change in comparison to other model uncertainties → sensitivity analysis to horizontal resolution and biological assumptions (release dates, PLD, etc).
 Thanks for listening!