

Assessment of the risk of destabilization of vehicles at crossing points between streams and roads

By:

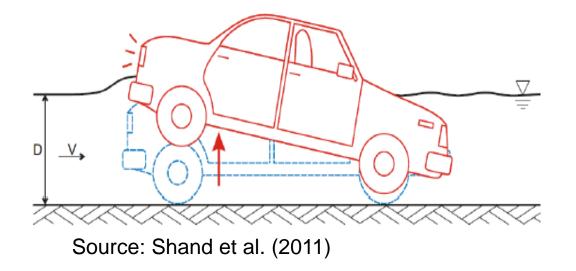
Ricardo A. Bocanegra and <u>Félix Francés</u>

Research Group of Hydrological and Environmental Modelling (GIMHA) Research Institute of Water and Environmental Engineering (IIAMA) Universitat Politècnica de València

- Several studies indicate that a large number of people have lost their lives when trying to cross flooded areas with their vehicles (Drobot et al., 2007, Fitzgerald et al., 2010)
- Floods are the main cause of disruption of public and private transport systems (Pregnolato et al., 2017). The affectation of these systems generates a cascade effect that can have serious repercussions (Suárez et al., 2005)
- There are few studies aimed at determining the risk of vehicle instability at intersections sites between roads and streams

Objectives

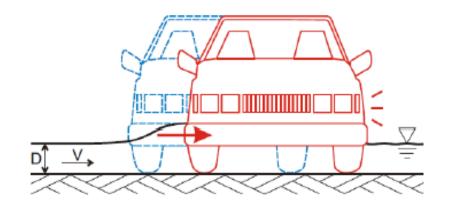
- 1. To develop a methodology to calculate the risk of vehicle instability at intersection sites between streams and roads
- 2. To implement the developed methodology in a case study



Floating

Buoyancy and lift forces exceed the weight of the vehicle. This instability is dominant in low velocity and high depth flow

https://www.youtube.com/watch?v=LC5Id79joIA (Accessed 16/04/2019)



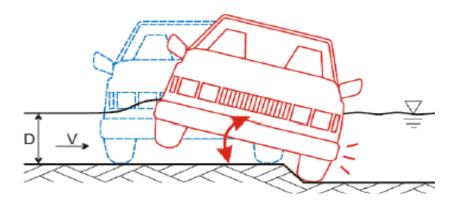
Vehicle stability failure mechanisms

Sliding

Drag force exceeds the frictional force produced between tires and ground

Source: Shand et al. (2011)

https://www.youtube.com/watch?v=3HrdgaiM9sY (Accessed 16/04/2019)



Toppling

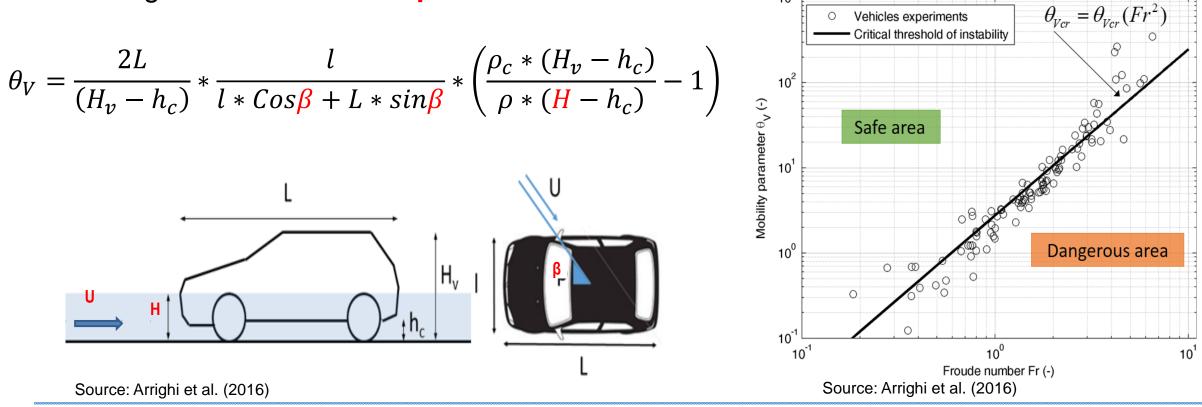
It seems to occur only when the vehicles have already been washed away by the flow or have floated and found irregular land

Source: Shand et al. (2011)

https://www.youtube.com/watch?v=Va8w7Jng9rM (Accessed 16/04/2019)

10

0

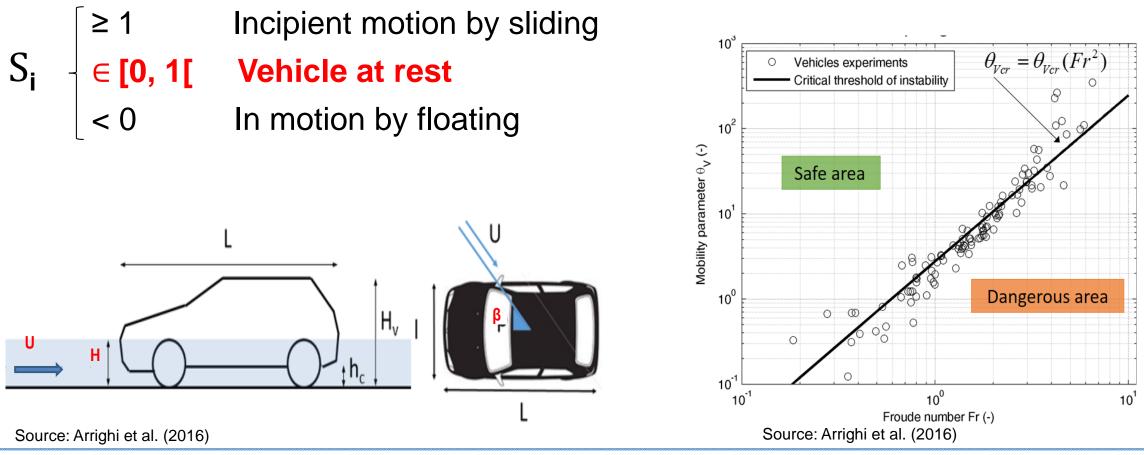

Critical Threshold θ_{Vcr} (H, U)

 $\theta_{Vcr} = 8.2 * Fr^2 - 14.1 * Fr + 5.4$

Vehicles experiments

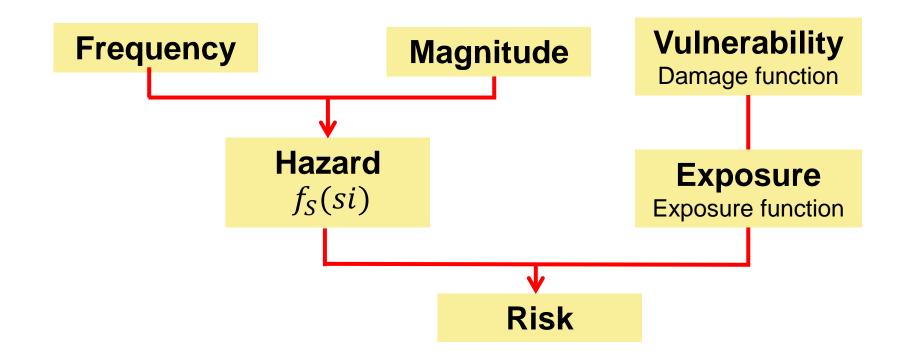
Mobility Parameter θ_{v}

Based on flood (H), vehicle characteristics and the angle of flow incidence β

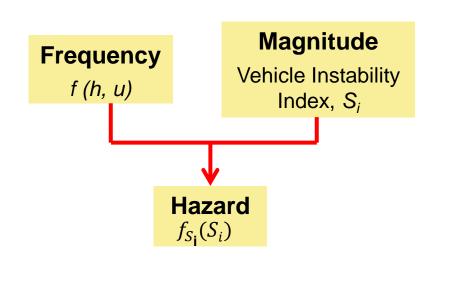


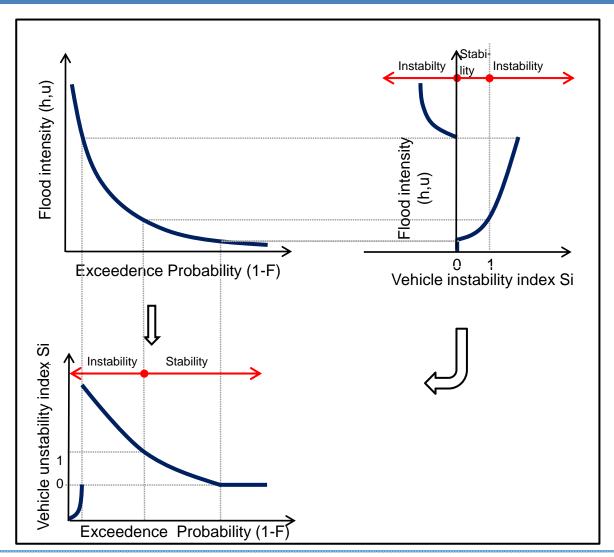
Stability criterion:

iiama



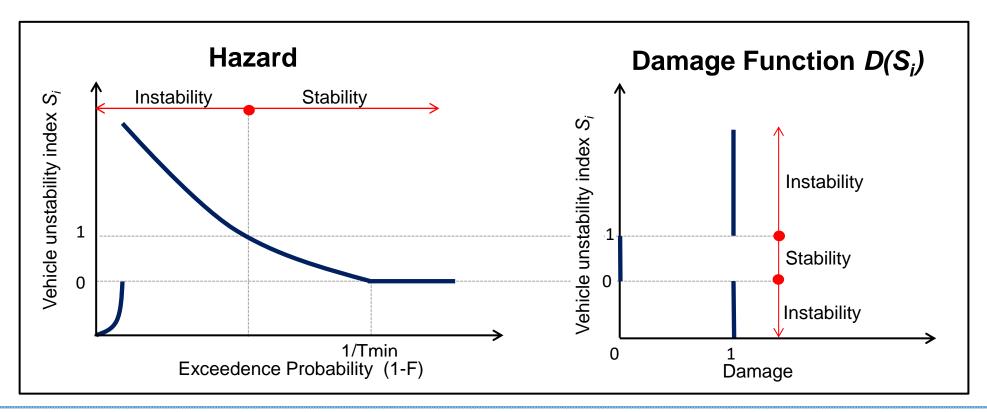
Defined as the mean number of vehicles that would destabilize annually per unit area at a specific point



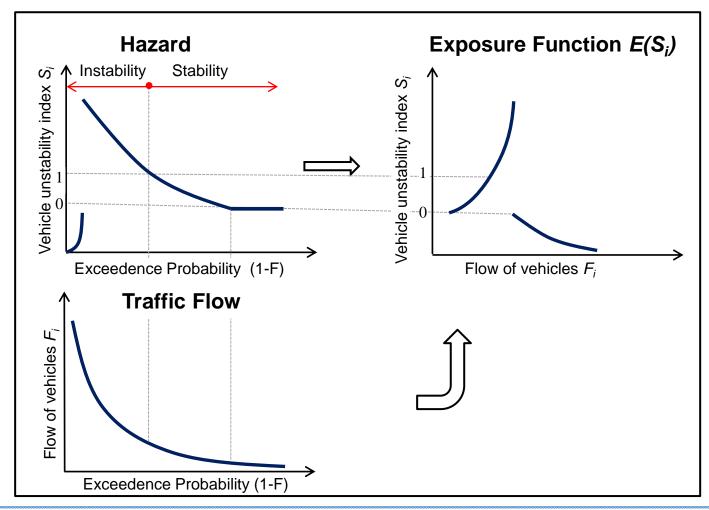


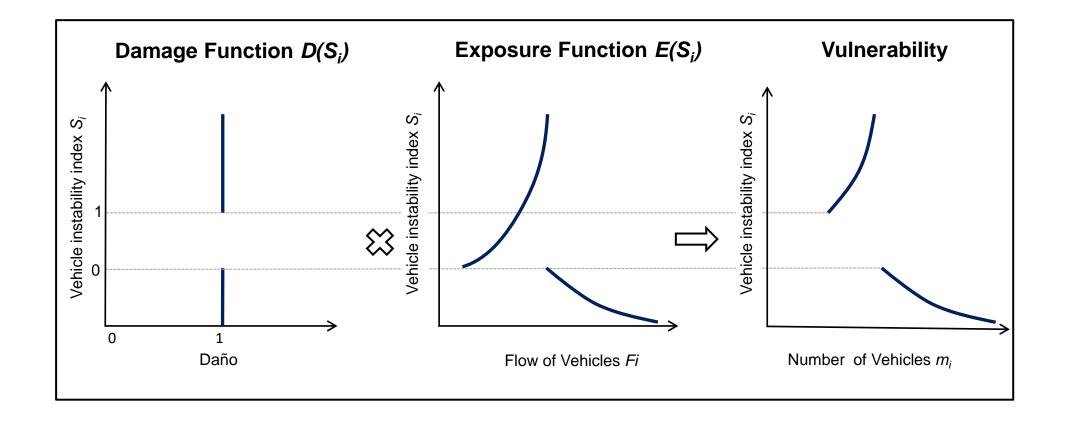
Vehicle instability hazard

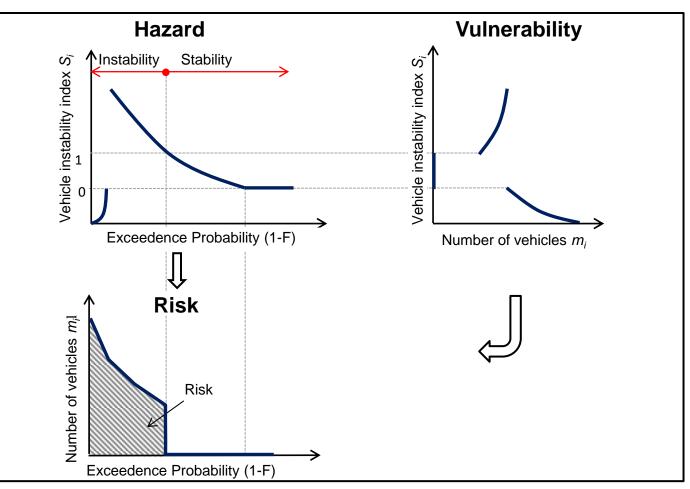
Vehicle flood hazard can be defined as the probability for the conditions that cause the loss of stability of vehicles => depends on type of car i



- Vulnerability depends on the exposure and susceptibility of the elements that could be affected by the flood
- \Box Susceptibility is established through a damage function $D(S_i)$




\Box Exposure is established through a exposure function $E(S_i)$



Risk of vehicle instability

□ Risk for a vehicle type *i* corresponds to the area under the curve in the graph of risk

□ It can be estimated as:

$$r = \sum_{i=1}^{K} g_i \int_0^1 D(s_i) E(s_i) dF_{S_i} = \sum_{i=1}^{K} g_i \int_0^\infty D(s_i) E(s_i) f_{S_i}(s) ds$$

where:

 $D(s_i)$ = damage function for car type i, i= 1, ..., K $E(s_i)$ = exposure function for car type i g_i = proportion of car type i

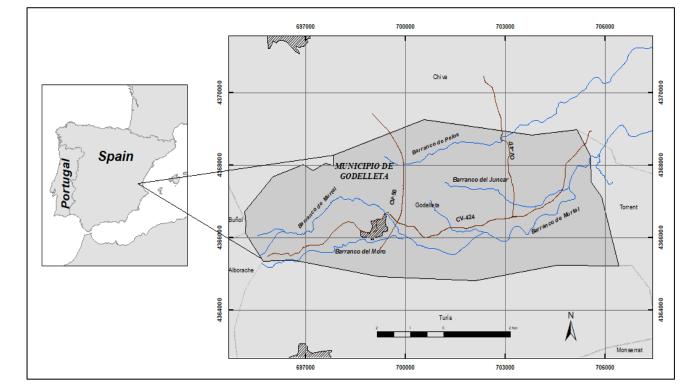
□ And can be approximated by:

$$r = \sum_{i=1}^{K} g_{i} \sum_{j=Tmin}^{Tmax} D(s_{i})E(s_{i}) \left(\frac{1}{T_{j-1}} - \frac{1}{T_{j}}\right)$$

where:

j= flood hazard map for return period T_{i}

Tmin corresponds to the lowest return period for inundation


Tmax corresponds to the highest return period with information

- Municipality area = 37.5 Km^2
- Located in the middle part of the catchment of the Rambla del Poyo
- Mediterranean climate
- Drainage network is formed by several ephemeral rivers with a torrential regime
- The road network is relatively dense and is formed by regional and local roads, which are in good condition
- 26 intersection points: 18 culverts and 8 fords

Characteristics of vehicles

	Vehicle i					
Parameter	Utility Seat Ibiza	Compact Seat León	Small SUV Peugeot 2008	Medium SUV Volkswagen Tiguan		
Length (m)	3.683	4.184	4.159	4.433		
Width (m)	1.610	1.742	1.739	1.809		
Height (m)	1.421	1.439	1.556	1.665		
Ground clearance (m)	0.124	0.12	0.165	0.175		
Density (Kg/m ³)	108.00	125.86	104.41	115.26		
Proportion gi	0.262	0.322	0.148	0.268		

Seat Ibiza

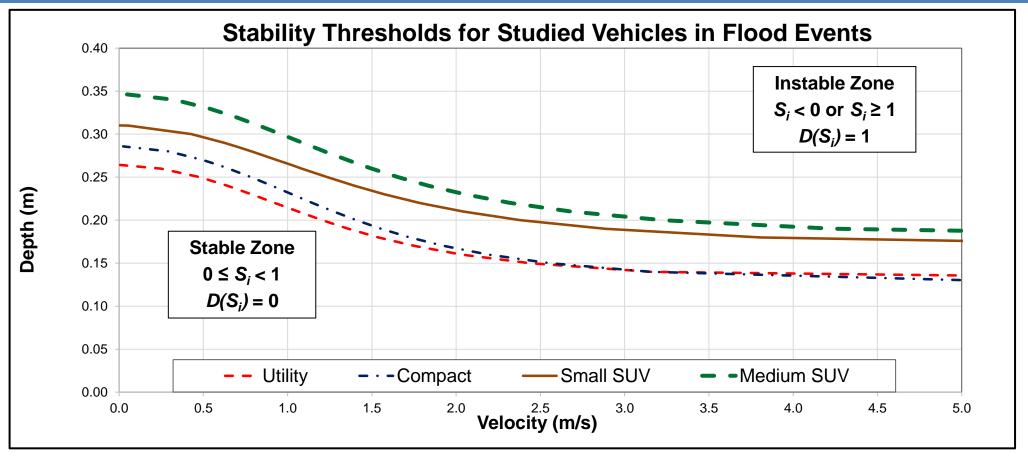
Seat León

Peugeot 2008

Intersection sites

Fords

Culverts



Vulnerability

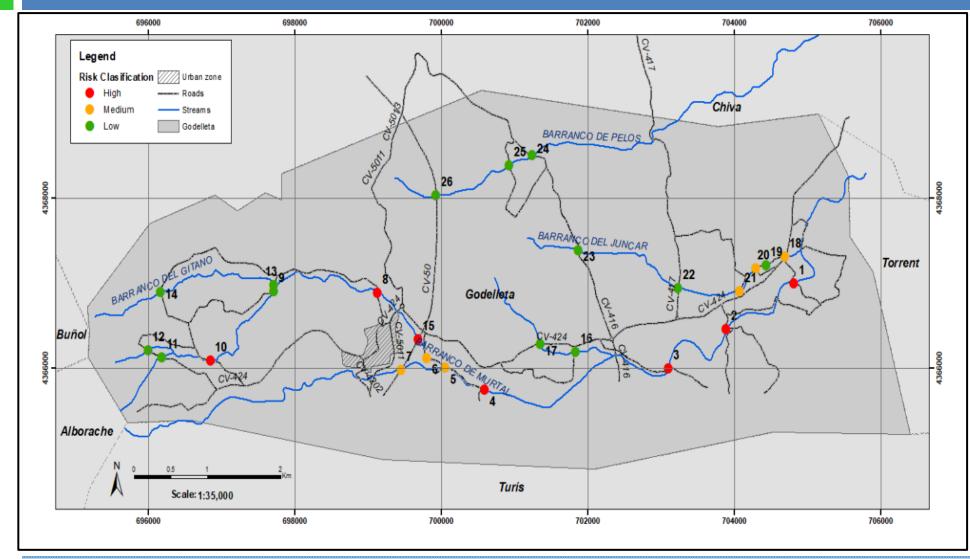
It was assumed that drivers decided to stop circulating in the flooded area when the water depth reaches a value of 0.3 m

□ Discharge were calculated for Tr = 1, 2, 5, 10, 25, 50, 100 y 500 years using this expression:

$$Q = 0.4929 \ A_d^{0.75} \ T_r^{0.6512}$$

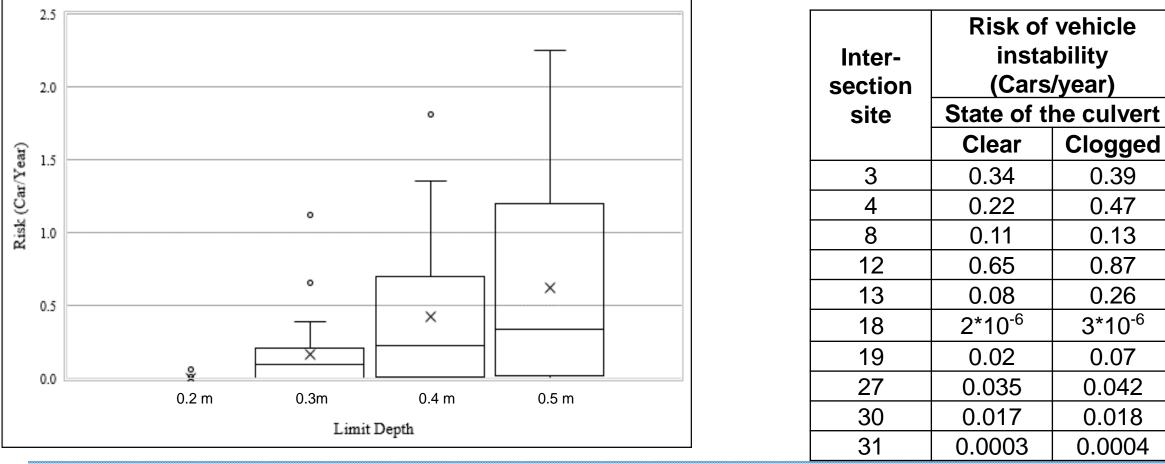
- Cross sections of the streams were obtained from DEM generated for the Centro Nacional de Información Geográfica de España
- □ Velocities and depths water were obtained using the software HEC RAS

 \Box Hazard index S_i were calculated for every type of vehicle and for every Tr


Inter-			Vehicular	Flood Tr 50 años				Risk of Instability (Cars/year)		
section	Stream	Work	Flow (Cars/ hour)	Dis-	Dis- Hazard index S _i Vehicle Type				Deten	
Point		hour)		hour)	charge	Small			SUVs SUVs	
				(m³/s)	cars	pacts	small	med.		tiai
1		Culvert	45.32	73.71	-0.42	-0.43	-0.45	-0.52	0.35	4.67
2		Culvert	0.50	70.80	-0.14	-0.14	-0.14	-0.15	0.21	1.85
3		Culvert	1.51	67.68	-0.26	-0.25	-0.26	-0.28	0.22	3.80
4		Ford	1.01	53.55	-0.86	-0.82	-0.86	-0.90	1.12	2.37
5	Dovino	Culvert	1.51	47.71	-0.22	-0.21	-0.22	-0.23	0.11	2.99
6	Ravine	Ford	0.21	33.13	-0.13	-0.12	-0.13	-0.13	0.11	0.46
7	Dermuna	Culvert	214.21	32.96	0.00	0.00	0.00	0.00	0.16	2.21
8		Culvert	4.03	25.72	-0.21	-0.20	-0.21	-0.23	0.65	2.13
9		Culvert	6.04	13.41	-0.22	-0.21	-0.22	-0.24	0.08	1.56
10		Ford	3.02	8.58	-74.99	26.73	7.79	3.80	0.39	0.48
11		Ford	0.33	2.87	-0.72	-0.89	-1.14	-4.20	0.01	0.02

Risk of vehicle instability

Inter-	Risk of vehicle			
section	instability			
Points	Deal	Poten-		
	Real	tial		
1	0.35	4.67		
2	0.21	1.85		
3	0.22	3.80		
4	1.12	2.37		
5	0.11	2.99		
6	0.11	0.46		
7	0.16	2.21		
8	0.65	2.13		
9	0.08	1.56		
10	0.39	0.48		
11	0.01	0.02		
12	<10-4	<10-4		
13	0.02	0.29		
14	0.00	0.01		
15	0.20	1.15		
16	2*10 ⁻⁴	0.004		
17	5*10 ⁻⁴	0.001		
18	0.18	3.71		
19	0.04	0.25		
20	0.18	0.52		
21	0.12	0.42		
22	0.02	0.20		
23	3*10 ⁻⁴	3*10 ⁻⁴		
24	0.04	0.33		
25	0.003	0.04		
26	<10-4	<10-4		



Sensitivity analysis

Sensitivity to the state

of the culvert

Sensitivity to limit depth to vehicular traffic

Assessment of the risk of destabilization of vehicles at crossing points

Clogged

0.39

0.47

0.13

0.87

0.26

3*10⁻⁶

0.07

0.042

0.018

0.0004

between streams and roads

- A methodology to estimate the risk of vehicle instability at intersection points between streams and roads was developed
- □ In this methodology the risk is determined by a numerical approximation of the statistical integral of the instability hazard and the vehicles' vulnerability
- The methodology was applied in the municipality of Godelleta (Spain). It was found that the risk of vehicle instability is relatively high in approximately 25% of the intersections between roads and streams
- The number of vehicles at risk is sensitive to the condition of the sewers and the depth at which vehicle traffic stops

Instituto de Ingeniería del Agua y Medio Ambiente

